Consequences of widespread tree mortality triggered by drought and temperature stress

Abstract

Forests provide innumerable ecological, societal and climatological benefits, yet they are vulnerable to drought and temperature extremes. Climate-driven forest die-off from drought and heat stress has occurred around the world, is expected to increase with climate change and probably has distinct consequences from those of other forest disturbances. We examine the consequences of drought- and climate-driven widespread forest loss on ecological communities, ecosystem functions, ecosystem services and land–climate interactions. Furthermore, we highlight research gaps that warrant study. As the global climate continues to warm, understanding the implications of forest loss triggered by these events will be of increasing importance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Images of climate-induced forest die-off from around the world.
Figure 2: Fluxes of radiation, water and carbon before and after widespread forest die-off.
Figure 3: Global distribution of studies documenting climate-induced widespread forest die-off events and consequences, from the English language scientific literature.

References

  1. 1

    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Millenium Ecosystem Assessment. Ecosystems and Human Well-being (Island, 2005).

  3. 3

    Pan, Y. et al. A large and persistent carbon sink in the world's forests. Science 333, 988–993 (2011).

    Article  CAS  Google Scholar 

  4. 4

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manag. 259, 660–684 (2010).

    Article  Google Scholar 

  5. 5

    Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).

    Article  CAS  Google Scholar 

  6. 6

    Van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).

    Article  CAS  Google Scholar 

  7. 7

    Mueller-Dombois, D. Canopy dieback and successional processes in Pacific forests. Pacif. Sci. 37, 317–324 (1983).

    Google Scholar 

  8. 8

    Adams, H. D. et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc. Natl Acad. Sci. USA 106, 7063–7066 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Hicke, J. et al. The effects of biotic disturbance on carbon budgets of North American forests. Glob. Change Biol. 18, 7–34 (2012).

    Article  Google Scholar 

  10. 10

    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    Article  CAS  Google Scholar 

  11. 11

    Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Article  Google Scholar 

  12. 12

    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    Article  Google Scholar 

  13. 13

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

    Article  Google Scholar 

  14. 14

    Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol. 186, 274–281 (2010).

    Article  Google Scholar 

  15. 15

    Anderegg, W. et al. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl Acad. Sci. USA 109, 233–237 (2012).

    Article  Google Scholar 

  16. 16

    Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).

    Article  Google Scholar 

  17. 17

    Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).

    Article  Google Scholar 

  18. 18

    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    Article  CAS  Google Scholar 

  19. 19

    Suarez, M. L. & Kitzberger, T. Recruitment patterns following a severe drought: Long-term compositional shifts in Patagonian forests. Can. J. Forest Res. 38, 3002–3010 (2008).

    Article  Google Scholar 

  20. 20

    Mueller, R. C. et al. Differential tree mortality in response to severe drought: Evidence for long-term vegetation shifts. J. Ecology 93, 1085–1093 (2005).

    Article  Google Scholar 

  21. 21

    Fensham, R. J. & Holman, J. E. Temporal and spatial patterns in drought-related tree dieback in Australian savanna. J. Appl. Ecol. 36, 1035–1050 (1999).

    Article  Google Scholar 

  22. 22

    Floyd, M. L. et al. Relationship of stand characteristics to drought-induced mortality in three southwestern pinon-juniper woodlands. Ecol. Appl. 19, 1223–1230 (2009).

    Article  Google Scholar 

  23. 23

    Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).

    Article  CAS  Google Scholar 

  24. 24

    Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. Bioscience 58, 501–517 (2008).

    Article  Google Scholar 

  25. 25

    Dwyer, J. M., Fensham, R. J., Fairfax, R. J. & Buckley, Y. M. Neighbourhood effects influence drought-induced mortality of savanna trees in Australia. J. Veg. Sci. 21, 573–585 (2010).

    Article  Google Scholar 

  26. 26

    Suarez, M. L. & Kitzberger, T. Differential effects of climate variability on forest dynamics along a precipitation gradient in northern Patagonia. J. Ecol. 98, 1023–1034 (2010).

    Article  Google Scholar 

  27. 27

    Collins, B. J., Rhoades, C. C., Hubbard, R. M. & Battaglia, M. A. Tree regeneration and future stand development after bark beetle infestation and harvesting in Colorado lodgepole pine stands. Forest Ecol. Manag. 261, 2168–2175 (2011).

    Article  Google Scholar 

  28. 28

    Villalba, R. & Veblen, T. T. Influences of large-scale climatic variability on episodic tree mortality in northern Patagonia. Ecology 79, 2624–2640 (1998).

    Article  Google Scholar 

  29. 29

    Paritsis, J. & Veblen, T. T. Dendroecological analysis of defoliator outbreaks on Nothofagus pumilio and their relation to climate variability in the Patagonian Andes. Glob. Change Biol. 17, 239–253 (2011).

    Article  Google Scholar 

  30. 30

    Fensham, R. J., Fairfax, R. J. & Ward, D. P. Drought-induced tree death in savanna. Glob. Change Biol. 15, 380–387 (2009).

    Article  Google Scholar 

  31. 31

    Clifford, M. J., Cobb, N. S. & Buenemann, M. Long-term tree cover dynamics in a pinyon-juniper woodland: Climate-change-type drought resets successional clock. Ecosystems 14, 949–962 (2011).

    Article  Google Scholar 

  32. 32

    Kreyling, J., Jentsch, A. & Beierkuhnlein, C. Stochastic trajectories of succession initiated by extreme climatic events. Ecol. Lett. 14, 758–764 (2011).

    Article  CAS  Google Scholar 

  33. 33

    Carlos Linares, J., Julio Camarero, J. & Antonio Carreira, J. Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests. Glob. Ecol. Biogeogr. 18, 485–497 (2009).

    Article  Google Scholar 

  34. 34

    Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proc. Natl Acad. Sci. USA 95, 14839–14842 (1998).

    Article  CAS  Google Scholar 

  35. 35

    Kane, J. M. et al. Drought-induced mortality of a foundation species (Juniperus monosperma) promotes positive afterlife effects in understory vegetation. Plant Ecol. 212, 733–741 (2011).

    Article  Google Scholar 

  36. 36

    Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: A general theory of invasibility. J. Ecol. 88, 528–534 (2000).

    Article  Google Scholar 

  37. 37

    Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).

    Article  CAS  Google Scholar 

  38. 38

    Sthultz, C. M., Gehring, C. A. & Whitham, T. G. Shifts from competition to facilitation between a foundation tree and a pioneer shrub across spatial and temporal scales in a semiarid woodland. New Phytol. 173, 135–145 (2007).

    Article  Google Scholar 

  39. 39

    Maestre, F. T., Valladares, F. & Reynolds, J. F. Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J. Ecol. 93, 748–757 (2005).

    Article  Google Scholar 

  40. 40

    Ellison, A. M. et al. Loss of foundation species: Consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).

    Article  Google Scholar 

  41. 41

    Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl Acad. Sci. USA 108, 1474–1478 (2011).

    Article  CAS  Google Scholar 

  42. 42

    Drever, M. C., Goheen, J. R. & Martin, K. Species-energy theory, pulsed resources, and regulation of avian richness during a mountain pine beetle outbreak. Ecology 90, 1095–1105 (2009).

    Article  Google Scholar 

  43. 43

    Martin, K., Norris, A. & Drever, M. Effects of bark beetle outbreaks on avian biodiversity in the British Columbia interior: Implications for critical habitat management. BC J. Ecosyst. Manage. 7, 10–25 (2006).

    Google Scholar 

  44. 44

    Redding, T. et al. Mountain pine beetle and watershed hydrology. BC J. Ecosyst. Manage. 9, 33–50 (2008).

    Google Scholar 

  45. 45

    Royer, P. D. et al. Extreme climatic event-triggered overstorey vegetation loss increases understorey solar input regionally: Primary and secondary ecological implications. J. Ecol. 99, 714–723 (2011).

    Article  Google Scholar 

  46. 46

    Adams, H. et al. Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses. Ecohydrology 5, 145–159 (2012).

    Article  Google Scholar 

  47. 47

    Zou, C. B., Ffolliott, P. F. & Wine, M. Streamflow responses to vegetation manipulations along a gradient of precipitation in the Colorado River Basin. Forest Ecol. Manag. 259, 1268–1276 (2010).

    Article  Google Scholar 

  48. 48

    Guardiola-Claramonte, M. et al. Streamflow response in semi-arid basins following drought-induced tree die-off: Indirect climate impact on hydrology. J. Hydrol. 406, 225–233 (2011).

    Article  Google Scholar 

  49. 49

    Hanson, P. J. & Weltzin, J. F. Drought disturbance from climate change: Response of United States forests. Sci. Total Environ. 262, 205–220 (2000).

    Article  CAS  Google Scholar 

  50. 50

    Classen, A. T., Hart, S. C., Whitman, T. G., Cobb, N. S. & Koch, G. W. Insect infestations linked to shifts in microclimate: Important climate change implications. Soil Sci. Soc. Am. J. 69, 2049–2057 (2005).

    Article  CAS  Google Scholar 

  51. 51

    Hughes, R. F. et al. Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna. Glob. Change Biol. 12, 1733–1747 (2006).

    Article  Google Scholar 

  52. 52

    Swaty, R. L., Deckert, R. J., Whitham, T. G. & Gehring, C. A. Ectomycorrhizal abundance and community composition shifts with drought: Predictions from tree rings. Ecology 85, 1072–1084 (2004).

    Article  Google Scholar 

  53. 53

    Davenport, D. W., Breshears, D. D., Wilcox, B. P. & Allen, C. D. Viewpoint: Sustainability of pinon-juniper ecosystems - a unifying perspective of soil erosion thresholds. J. Range Manage. 51, 231–240 (1998).

    Article  Google Scholar 

  54. 54

    Wilcox, B. P., Breshears, D. D. & Allen, C. D. Ecohydrology of a resource-conserving semiarid woodland: Effects of scale and disturbance. Ecol. Monogr. 73, 223–239 (2003).

    Article  Google Scholar 

  55. 55

    Clow, D. W., Rhoades, C., Briggs, J., Caldwell, M. & Lewis, W. M. Jr Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA. Appl. Geochem. 26, S174–S178 (2011).

    Article  CAS  Google Scholar 

  56. 56

    Xiong, Y. M., D'Atri, J. J., Fu, S. L., Xia, H. P. & Seastedt, T. R. Rapid soil organic matter loss from forest dieback in a subalpine coniferous ecosystem. Soil Biol. Biochem. 43, 2450–2456 (2011).

    Article  CAS  Google Scholar 

  57. 57

    Lodge, D. J., Scatena, F. N., Asbury, C. E. & Sanchez, M. J. Fine litterfall and related nutrient inputs resulting from Hurricane Hugo in subtropical wet and lower montane rain-forests of Puerto-Rico. Biotropica 23, 336–342 (1991).

    Article  Google Scholar 

  58. 58

    Whigham, D. F., Olmsted, I., Cano, E. C. & Harmon, M. E. The impacts of Hurricane Gilbert on trees, litterfall, and woody debris in a dry tropical forest in the northeastern Yucatan Peninsula. Biotropica 23, 434–441 (1991).

    Article  Google Scholar 

  59. 59

    Scatena, F. N., Moya, S., Estrada, C. & Chinea, J. D. The first five years in the reorganization of aboveground biomass and nutrient use following Hurricane Hugo in the Bisley experimental watersheds, Luquillo experimental forest, Puerto Rico. Biotropica 28, 424–440 (1996).

    Article  Google Scholar 

  60. 60

    Zimmerman, J. K. et al. Nitrogen immobilization by decomposing woody debris and the recovery of tropical wet forest from hurricane damage. Oikos 72, 314–322 (1995).

    Article  Google Scholar 

  61. 61

    Dale, V. H., Joyce, L. A., McNulty, S. & Neilson, R. P. The interplay between climate change, forests, and disturbances. Sci. Total Environ. 262, 201–204 (2000).

    Article  CAS  Google Scholar 

  62. 62

    Bigler, C. & Veblen, T. T. Changes in litter and dead wood loads following tree death beneath subalpine conifer species in northern Colorado. Can. J. Forest Res. 41, 331–340 (2011).

    Article  Google Scholar 

  63. 63

    Bigler, C., Kulakowski, D. & Veblen, T. T. Multiple disturbance interactions and drought influence fire severity in rocky mountain subalpine forests. Ecology 86, 3018–3029 (2005).

    Article  Google Scholar 

  64. 64

    Bond, M. L., Lee, D. E., Bradley, C. M. & Hanson, C. T. Influence of pre-fire tree mortality on fire severity in conifer forests of the San Bernardino Mountains, California. Open Forest Sci. J. 2, 41–47 (2009).

    Article  Google Scholar 

  65. 65

    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).

    Article  CAS  Google Scholar 

  66. 66

    Schoennagel, T., Veblen, T. T., Negron, J. F. & Smith, J. M. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA. PLoS ONE 7, e30002 (2012).

    Article  CAS  Google Scholar 

  67. 67

    Walton, A. Provincial-level Projection of the Current Mountain Pine Beetle Outbreak: Update of the Infestation Projection Based on the 2009 Provincial Aerial Overview of Forest Health and the BCMPB Model. (British Columbia Ministry of Forests, Lands and Natural Resource Operations, 2010).

    Google Scholar 

  68. 68

    Hawkes, B. et al. in Mountain Pine Beetle Symposium: Challenges and Solutions (eds Short, T. L., Brooks, J. E. & Stone, J. E.) 177–199 (Natural Resources Canada, 2004).

    Google Scholar 

  69. 69

    Lindenmayer, D. B. et al. Ecology - salvage harvesting policies after natural disturbance. Science 303, 1303–1303 (2004).

    Article  CAS  Google Scholar 

  70. 70

    Darh, A. & Hawkins, C. Regeneration and growth following mountain pine beetle attack: A synthesis of knowledge. BC J. Ecosyst. Manage. 12, 1–16 (2011).

    Google Scholar 

  71. 71

    Williams, A. P. et al. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl Acad. Sci. USA 107, 21289–21294 (2010).

    Article  Google Scholar 

  72. 72

    Breshears, D. D., Lopez-Hoffman, L. & Graumlich, L. J. When ecosystem services crash: Preparing for big, fast, patchy climate change. Ambio 40, 256–263 (2011).

    Article  Google Scholar 

  73. 73

    Jones, J. A. Hydrologic processes and peak discharge response to forest removal, regrowth, and roads in 10 small experimental basins, western Cascades, Oregon. Water Resour. Res. 36, 2621–2642 (2000).

    Article  Google Scholar 

  74. 74

    Tonina, D. et al. Hydrological response to timber harvest in northern Idaho: Implications for channel scour and persistence of salmonids. Hydrol. Process. 22, 3223–3235 (2008).

    Article  Google Scholar 

  75. 75

    Beudert, B., Klocking, B. & Schwartze, R. in Forest Hydrology - Results of Research in Germany and Russia (eds Hulmann, H., Schwarze, R., Federov, S. F. & Marunich, S. V.) Ch. 7 (German International Hydrological Programme/Hydrology and Water Resources Programme, 2007).

    Google Scholar 

  76. 76

    Jane, G. T. & Green, T. G. A. Biotic influences on landslide occurrence in the Kaimai Range. New Zeal. J. Geol. Geop. 26, 381–393 (1983).

    Article  Google Scholar 

  77. 77

    Lehmer, E. M. et al. The interplay of plant and animal disease in a changing landscape: The role of sudden aspen decline in moderating Sin Nombre virus prevalence in natural deer mouse populations. Integr. Comp. Biol. 51, E79–E79 (2011).

    Google Scholar 

  78. 78

    Embrey, S., Remais, J. V. & Hess, J. Climate change and ecosystem disruption: The health impacts of the North American Rocky Mountain pine beetle infestation. Am. J. Public Health 102, 818–827 (2012).

    Article  Google Scholar 

  79. 79

    Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncerain. Proc. Natl Acad. Sci. USA 105, 1551–1555 (2008).

    Article  Google Scholar 

  80. 80

    Metsaranta, J. M., Dymond, C. C., Kurz, W. A. & Spittlehouse, D. L. Uncertainty of 21st century growing stocks and GHG balance of forests in British Columbia, Canada resulting from potential climate change impacts on ecosystem processes. Forest Ecol. Manag. 262, 827–837 (2011).

    Article  Google Scholar 

  81. 81

    McFarlane, B. L. & Witson, D. O. T. Perceptions of ecological risk associated with mountain pine beetle (Dendroctonus ponderosae) infestations in Banff and Kootenay national parks of Canada. Risk Anal. 28, 203–212 (2008).

    Article  Google Scholar 

  82. 82

    Kovacs, K. et al. Predicting the economic costs and property value losses attributed to sudden oak death damage in California (2010–2020). J. Environ. Manage. 92, 1292–1302 (2011).

    Article  Google Scholar 

  83. 83

    Kovacs, K., Holmes, T. P., Englin, J. E. & Alexander, J. The dynamic response of housing values to a forest invasive disease: Evidence from a sudden oak death infestation. Environ. Resour. Econ. 49, 445–471 (2011).

    Article  Google Scholar 

  84. 84

    Holmes, T. & Smith, B. in General Technical Report - Pacific Southwest Research Station (eds Frankel, S. J., Kliejunas, J. T. & Palmieri, K. M.) 289–298 (USDA Forest Service, 2008).

    Google Scholar 

  85. 85

    Holmes, T. P., Murphy, E. A., Bell, K. P. & Royle, D. D. Property value impacts of hemlock woolly adelgid in residential forests. Forest Sci. 56, 529–540 (2010).

    Google Scholar 

  86. 86

    Holmes, T. P., Murphy, E. A. & Bell, K. P. Exotic forest insects and residential property values. Agr. Resour. Econ. Rev. 35, 155–166 (2006).

    Article  Google Scholar 

  87. 87

    Price, J. I., McCollum, D. W. & Berrens, R. P. Insect infestation and residential property values: A hedonic analysis of the mountain pine beetle epidemic. Forest Policy Econ. 12, 415–422 (2010).

    Article  Google Scholar 

  88. 88

    Brovkin, V., Ganopolski, A., Claussen, M., Kubatzki, C. & Petoukhov, V. Modelling climate response to historical land cover change. Glob. Ecol. Biogeogr. 8, 509–517 (1999).

    Article  Google Scholar 

  89. 89

    Cao, L. et al. Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0). Geophys. Res. Lett. 36, L10402 (2009).

    Article  Google Scholar 

  90. 90

    Anderson, R. G. et al. Biophysical considerations in forestry for climate protection. Front. Ecol. Environ. 9, 174–182 (2011).

    Article  Google Scholar 

  91. 91

    Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

    Article  CAS  Google Scholar 

  92. 92

    O'Halloran, T. L. et al. Radiative forcing of natural forest disturbances. Glob. Change Biol. 18, 555–565 (2012).

    Article  Google Scholar 

  93. 93

    Stohlgren, T. J., Chase, T. N., Pielke, R. A., Kittel, T. G. F. & Baron, J. S. Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas. Glob. Change Biol. 4, 495–504 (1998).

    Article  Google Scholar 

  94. 94

    Tague, C. & Dugger, A. Ecohydrology and climate change in the mountains of the western USA- A review of research and opportunities. Geogr. Compass 4, 1648–1663 (2010).

    Article  Google Scholar 

  95. 95

    Huang, C-Y. & Anderegg, W. R. L. Large drought-induced aboveground live biomass losses in southern Rocky Mountain aspen forests. Glob. Change Biol. 18, 1016–1027 (2012).

    Article  Google Scholar 

  96. 96

    Romme, W. H., Knight, D. H. & Yavitt, J. B. Mountain pine beetle outbreaks in the Rocky Mountains - Regulators of primary productivity. Am. Nat. 127, 484–494 (1986).

    Article  Google Scholar 

  97. 97

    Pfeifer, E. M., Hicke, J. A. & Meddens, A. J. H. Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States. Glob. Change Biol. 17, 339–350 (2011).

    Article  Google Scholar 

  98. 98

    Michaelian, M., Hogg, E. H., Hall, R. J. & Arsenault, E. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Change Biol. 17, 2084–2094 (2011).

    Article  Google Scholar 

  99. 99

    Brown, M. et al. Impact of mountain pine beetle on the net ecosystem production of lodgepole pine stands in British Columbia. Agr. Forest Meteorol. 150, 254–264 (2010).

    Article  Google Scholar 

  100. 100

    Brown, M. G. et al. The carbon balance of two lodgepole pine stands recovering from mountain pine beetle attack in British Columbia. Agr. Forest Meteorol. (2011).

  101. 101

    Amiro, B. D. et al. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J. Geophys. Res. 115, G00K02 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Karp, H. Mooney, T. E. Kolb, L. Oakes, C. Allen, M. Zeppel, J. Berry and C. Field for discussion of the concepts and comments on the manuscript. J.M.K. was supported in part by the Science Foundation of Arizona and the Achievement Rewards for College Students Foundation. W.R.L.A. was supported in part by an award from the Department of Energy Office of Science Graduate Fellowship (DOE SCGF) programme. The DOE SCGF programme was made possible in part by the American Recovery and Reinvestment Act of 2009. The DOE SCGF programme is administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-AC05-06OR23100. All opinions expressed in this paper are the authors' and do not necessarily reflect the policies and views of the DOE, ORAU, or ORISE.

Author information

Affiliations

Authors

Corresponding author

Correspondence to William R. L. Anderegg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anderegg, W., Kane, J. & Anderegg, L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Clim Change 3, 30–36 (2013). https://doi.org/10.1038/nclimate1635

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing