Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)

Abstract

Climate-driven changes in glacier-fed streamflow regimes have direct implications on freshwater supply, irrigation and hydropower potential. Reliable information about current and future glaciation and runoff is crucial for water allocation, a complex task in Central Asia, where the collapse of the Soviet Union has transformed previously interdependent republics into autonomous upstream and downstream countries. Although the impacts of climate change on glaciation and runoff have been addressed in previous work undertaken in the Tien Shan (known as the 'water tower of Central Asia'), a coherent, regional perspective of these findings has not been presented until now. Here we show that glacier shrinkage is most pronounced in peripheral, lower-elevation ranges near the densely populated forelands, where summers are dry and where snow and glacial meltwater is essential for water availability. Shifts of seasonal runoff maxima have already been observed in some rivers, and it is suggested that summer runoff will further decrease in these rivers if precipitation and discharge from thawing permafrost bodies do not compensate sufficiently for water shortfalls.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Location map of the Tien Shan mountains and seasonal distribution of precipitation in Central Asia.
Figure 2: Net mass balances for selected glaciers in Central Asia.
Figure 3: Recent area changes of selected glaciers in the Tien Shan mountains.
Figure 4: Glacial runoff contribution in Kyrgyzstan.

References

  1. 1

    Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Kaser, G., Grosshauser, M. & Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci. 107, 20223–20227 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Dikikh, A. N., Sokalskaya, A. M., Dyurgerov, M. B., Razek, I. V. & Sinoan, Y. in Glaciers of Tien Shan (eds Dyurgerov, M. B., Chaohai, L. & Zichu, C.) 131–167 (VINITI, 1995).

    Google Scholar 

  5. 5

    Hagg, W., Braun, L. N., Weber, M. & Brecht, M. Runoff modelling in glacierized Central Asian catchments for present-day and future climate. Nord. Hydrol. 37, 1–13 (2006).

    Article  Google Scholar 

  6. 6

    Solomina, O., Barry, R. & Bodnya, M. The retreat of Tien Shan glaciers (Kyrgyzstan) since the Little Ice Age estimated from aerial photographs, lichenometric and historical data. Geogr. Ann. A 86, 205–215 (2004).

    Article  Google Scholar 

  7. 7

    Liu, C. & Han, T. Relation between recent glacier variations and climate in the Tien Shan mountains, Central Asia. Ann. Glaciol. 16, 11–16 (1992).

    Article  Google Scholar 

  8. 8

    Mikhalenko, V. N. et al. Glacier recession in the Tien Shan between the 19th and the beginning of the 21st century: results of ice-core drilling and borehole temperature measurements. Data Glaciol. Stud. 98, 175–182 (2005) [in Russian].

    Google Scholar 

  9. 9

    Narama, C., Kääb, A., Duishonakunov, M. & Abdrakhmatov, K. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (1970), Landsat (2000), and ALOS (2007) satellite data. Global Planet. Change 71, 42–54 (2010).

    Article  Google Scholar 

  10. 10

    Bolch, T. & Marchenko, S. Significance of glaciers, rockglaciers and ice-rich permafrost in the Northern Tien Shan as water towers under climate change conditions. Assess. Snow Glacier Water Resources Asia 8, 132–144 (2009).

    Google Scholar 

  11. 11

    Konovalov, V. G. in Hydrology in a Changing Environment (eds Wheater, H. & Kirby, C.) 141–146 (British Hydrological Society, 1998).

    Google Scholar 

  12. 12

    Hagg, W., Braun, L. N., Kuhn, M. & Nesgaard, T. I. Modelling of hydrological response to climate change in glacierized Central Asian catchments. J. Hydrol. 332, 40–53 (2007).

    Article  Google Scholar 

  13. 13

    Braun, L. N. & Hagg, W. Present and future impact of snow cover and glaciers on runoff from mountain regions - comparison between Alps and Tien Shan. Assess. Snow Glacier Water Resources Asia 8, 36–43 (2009).

    Google Scholar 

  14. 14

    Berg, L. S. Is Central Asia drying out? Proc. Russ. Geogr. Soc. 41, 507–521 (1905) [in Russian].

    Google Scholar 

  15. 15

    Micklin, P. P. Desiccation of the Aral Sea: a water management disaster in the Soviet Union. Science 241, 1170–1176 (1988).

    CAS  Article  Google Scholar 

  16. 16

    Fairless, D. Northern Aral Sea recovering. Nature http://dx.doi.org/10.1038/news070409-8 (2007).

  17. 17

    Malone, E. L. Changing Glaciers and Hydrology in Asia: Addressing Vulnerabilities to Glacier Melt Impacts. Technical Report USAID (2010).

    Google Scholar 

  18. 18

    Niederer, P. et al. Tracing glacier wastage in the Northern Tien Shan (Kyrgyzstan/Central Asia) over the last 40 years. Climatic Change 86, 227–234 (2008).

    Article  Google Scholar 

  19. 19

    Kutuzov, S. & Shahgedanova, M. Glacier retreat and climatic variability in the eastern Terskey-Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century. Global Planet. Change 69, 59–70 (2009).

    Article  Google Scholar 

  20. 20

    Kotlyakov, V. M. & Severskiy, I. V. Glaciers of Central Asia: current situation, changes and possible impact on water resources. Assess. Snow Glacier Water Resources Asia 8, 160–177 (2009).

    Google Scholar 

  21. 21

    UNDP. Second National Communication of the Kyrgyz Republic to the United Nations Framework Convention on Climate Change (Bishkek, 2009).

  22. 22

    Aizen, V. B., Aizen, E. M., Melack, J. M. & Dozier, J. Climatic and hydrologic changes in the Tien Shan, Central Asia. J. Clim. 10, 1393–1404 (1997).

    Article  Google Scholar 

  23. 23

    Dyurgerov, M. B. et al. Mass balance monitoring of three Tien Shan glaciers. Data Glaciol. Stud. 77, 79–86 (1992) [in Russian].

    Google Scholar 

  24. 24

    Glazirin, G. E. Distribution and Regime of Mountain Glaciers (Hydrometeoizdat, 1985).

    Google Scholar 

  25. 25

    Bolch, T. Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global Planet Change 56, 1–12 (2007).

    Article  Google Scholar 

  26. 26

    Mamatkanov, D. M., Bazhanova, L. V. & Romanovskij, V. V. Water Resources of Kyrgyzstan (National Academy of Science of the Kyrgyz Republic, Institute of Water Problems and Hydropower, 2006) [in Russian].

    Google Scholar 

  27. 27

    Tao, H., Gemmer, M., Bai, Y., Su, B. & Mao, W. Trends of streamflow in the Tarim River Basin during the past 50 years: Human impact or climate change? J. Hydrol. 400, 1–9 (2011).

    Article  Google Scholar 

  28. 28

    Kuzmichenok, V. A. Changes in Climate Characteristics and Altitude of Firn Line in Kyrgyzstan during the Second Half of the 20th Century (Bishkek, 2010).

    Google Scholar 

  29. 29

    Cruz, R. V. et al. in IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 469–506 (Cambridge Univ. Press, 2007).

    Google Scholar 

  30. 30

    Kuzmichenok, V. Monitoring of water, snow and glacial resources of Kyrgyzstan. Assess. Snow Glacier Water Resources Asia 8, 84–99 (2009).

    Google Scholar 

  31. 31

    Giese, E., Mossig, I., Rybski, D. & Bunde, A. Long-term analysis of air temperature trends in Central Asia. Erdkunde 61, 186–202 (2007).

    Article  Google Scholar 

  32. 32

    Giese, E. & Mossig, I. Climate change in Central Asia (Institute for Geography, Justus-Liebig University, Giessen, 2004) [in German].

    Google Scholar 

  33. 33

    Williams, M. W. & Konovalov, V. G. Central Asia temperature and precipitation data, 1879–2003. (USA National Snow and Ice Data Center, 2008); http://nsidc.org/data/g02174.html

  34. 34

    Böhner, J. Secular climate fluctuatians and recent climate trends in Central and High Asia [Säkuläre Klimaschwankungen und rezente Klimatrends Zentral-und Hochasiens]. Göttinger Geogr. Abh. 101 (1996).

  35. 35

    Uppala, S. M. et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).

    Article  Google Scholar 

  36. 36

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project Bull. Am. Meteorol. Soc. 77, 434–471 (1996).

    Article  Google Scholar 

  37. 37

    Schneider, U., Becker, A., Meyer-Christoffer, A., Ziese, M. & Rudolf, B. Global Precipitation Analysis Products of the GPCC 1–13 (Global Precipitation Climatology Centre, 2011).

    Google Scholar 

  38. 38

    Wright, C. K., de Beurs, K. M., Akhmadieva, Z. K., Groisman, P. Y. & Henebry, G. M. Reanalysis data underestimate significant changes in growing season weather in Kazakhstan. Environ. Res. Lett. 4, 045020 (2009).

    Article  Google Scholar 

  39. 39

    IPCC Special Report on Emissions Scenarios (eds Nakicenovic, N. & Swart, R.) (Cambridge Univ. Press, 2000).

  40. 40

    Qin, D., Liu, S. & Li, P. Snow cover distribution, variability, and response to climate change in Western China. J. Clim. 19, 1820–1833 (2006).

    Article  Google Scholar 

  41. 41

    Glazirin, G. Hydrometeorological monitoring system in Uzbekistan. Assess. Snow Glacier Water Resources Asia 8, 65–83 (2009).

    Google Scholar 

  42. 42

    Dikikh, A. N. Glacial Water Resources in the Issyk-Kul Region (Kyrgyzstan) and their Current and Future Situation (Institute for Geography, Justus-Liebig Univ., Giessen, 2004) [in German].

    Google Scholar 

  43. 43

    Schröder, H. et al. Assessment of Renewable Ground and Surface Water Resource and the Impact of Economic Activity on Runoff in the Basin of the Ili River, Republic of Kazakhstan (Kazakh Academy of Sciences, 2002).

    Google Scholar 

  44. 44

    Severskiy, I. V. & Zichu, X. Snow Cover and Avalanches in the Tien Shan Mountains (VAC, 2000).

    Google Scholar 

  45. 45

    Khalsa, S. J. S. & Aizen, V. B. Variability in Central Asia seasonal snow cover during the MODIS period of record. Geophys. Res. Abstr. 10, EGU2008-A-0443 (2008).

    Google Scholar 

  46. 46

    Aizen, V. B., Aizen, E. M. & Kuzmichenok V, A. Glaciers and hydrological changes in the Tien Shan: simulation and prediction. Environ. Res. Lett. 2, 045019 (2007).

    Article  Google Scholar 

  47. 47

    Kuzmichenok, V. A. Glaciers of the Tien Shan. Computerized analysis of the inventory. Data Glaciol. Stud. 77, 29–40 (1993) [in Russian].

    Google Scholar 

  48. 48

    Hydrometeoizdat. Glacier Inventory of the USSR 14/2: Central Asia (Hydrometeoizdat, 1973) [in Russian].

  49. 49

    Yao, T. et al. Recent Glacial Retreat in the Chinese part of High Asia and its Impact on Water Resources of Northwest China (IHP/HWRP, Almaty, 2009).

    Google Scholar 

  50. 50

    Savoskul, O. S. Modern and Little Ice Age glaciers in 'humid' and 'arid' areas of the Tien Shan, Central Asia: two different patterns of fluctuation. Ann. Glaciol. 24, 142–147 (1997).

    Article  Google Scholar 

  51. 51

    Makarevich, K. G. & Liu, C. in Glaciers of Tien Shan (eds Dyurgerov, M., Liu, C. & Zichu, X.) 189–213 (VINITI, 1995) [in Russian].

    Google Scholar 

  52. 52

    Vilesov, E. N. & Morozova, V. I. Change of current glaciation and glacier runoff in the Northern Dzungary in the second half of the 20th century. Hydrometeorol. Ecol. [Gidrometeorologija i Ekologija] 4, 124–143 (2008) [in Russian].

    Google Scholar 

  53. 53

    Aizen, V. B., Kuzmichenok, V. A., Surazakov, A. B. & Aizen, E. M. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Global Planet. Change 56, 328–340 (2007).

    Article  Google Scholar 

  54. 54

    Liu, S. et al. Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Ann. Glaciol. 43, 91–96 (2006).

    Article  Google Scholar 

  55. 55

    Shangguan, D. et al. Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Prog. Nat. Sci. 19, 727–732 (2009).

    Article  Google Scholar 

  56. 56

    Cao, M. S. Detection of abrupt changes in glacier mass balance in the Tien Shan Mountains. J. Glaciol. 44, 352–358 (1998).

    CAS  Article  Google Scholar 

  57. 57

    WGMS Glacier Mass Balance Bulletin (2006–2007) (WGMS Zurich, 2009 and earlier volumes).

  58. 58

    Dolgushin, L. D. & Osipova, G. B. Glaciers (Mysl, 1989) [in Russian].

    Google Scholar 

  59. 59

    Jacob, T., Wahr, J., Pfeffer, T. W. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

    CAS  Article  Google Scholar 

  60. 60

    Dyurgerov, M. B. et al. On the cause of glacier mass balance variations in the Tian Shan mountains. GeoJournal 33, 311–317 (1994).

    Article  Google Scholar 

  61. 61

    Bolch, T. et al. The state and fate of Himalayan glaciers. Science 336, 310–314 (2012).

    CAS  Article  Google Scholar 

  62. 62

    Narama, C., Shimamura, Y., Nakayama, D. & Abdrakhmatov, K. Recent changes of glacier coverage in the western Terskey-Alatoo range, Kyrgyz Republic, using Corona and Landsat. Ann. Glaciol. 43, 223–229 (2006).

    Article  Google Scholar 

  63. 63

    Dyurgerov, M. B., Liu, C. & Zichu, X. Glaciers of Tien Shan (VINITI, 1995) [in Russian].

    Google Scholar 

  64. 64

    Hagg, W., Mayer, C., Lambrecht, A. & Helm, A. Sub-debris melt rates on southern Inylchek glacier, Central Tien Shan. Geogr. Ann. A 90, 55–63 (2008).

    Article  Google Scholar 

  65. 65

    Wang, L., Li, Z. & Wang, F. Spatial distribution of the debris layer on glaicers of the Tuomuer Peak, Western Tien Shan. J. Earth Sci. 22, 528–538 (2011).

    Article  Google Scholar 

  66. 66

    Nuimura, T. et al. Temporal changes in elevation of the debris-covered ablation area of Khumbu Glacier in the Nepal Himalaya since 1978. Arct. Antarct. Alp. Res. 43, 246–255 (2011).

    Article  Google Scholar 

  67. 67

    Bolch, T., Pieczonka, T. & Benn, D. I. Multi-decadal mass loss of glaciers in the Everest area (Nepal, Himalaya). The Cryosphere 5, 349–358 (2011).

    Article  Google Scholar 

  68. 68

    Sakai, A., Takeuchi, N., Fujita, K. & Nakawo, M. Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas. Int. Assoc. Hydrol. Sci. (IAHS) Publ. 265, 119–130 (2000).

    Google Scholar 

  69. 69

    Zhang, Y., Liu, S., Ding, Y., Li, J. & Shangguan, D. Preliminary study of mass balance on the Keqicar Baxi Glacier on the south slopes of Tianshan mountains. J. Glac. Geocry. 28, 477–484 (2006) [in Chinese with English abstract].

    Google Scholar 

  70. 70

    Vilesov, E. N. & Uvarov, V. N. Evolution of the Recent Glaciation in the Zailyskiy Alatau in the 20th Century (Kazakh State Univ., 2001) [in Russian].

    Google Scholar 

  71. 71

    Khromova, T. E., Dyurgerov, M. B. & Barry, R. G. Late-twentieth century changes in glacier extent in the Ak-shirak Range, Central Asia, determined from historical data and ASTER imagery. Geophys. Res. Lett. 30, 1863 (2003).

    Article  Google Scholar 

  72. 72

    Aizen, V. B., Kuzmichenok, V. A., Surazakov, A. B. & Aizen, E. M. Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Ann. Glaciol. 43, 202–213 (2006).

    Article  Google Scholar 

  73. 73

    Viviroli, D., Weingartner, R. & Messerli, B. Assessing the hydrological significance of the world's mountains. Mountain Res. Dev. 23, 32–40 (2003).

    Article  Google Scholar 

  74. 74

    Schulz, V. L. Rivers of Central Asia (Hydrometeoizdat, 1965) [in Russian].

    Google Scholar 

  75. 75

    Kemmerikh, A. O. The role of glaciers in runoff of Central Asian rivers. Data Glaciol. Stud. (1972) [in Russian].

  76. 76

    Chen, Y., Takeuchi, K., Xu, C., Chen, Y. & Xu, Z. Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol Process 20, 2207–2216 (2006).

    Article  Google Scholar 

  77. 77

    Dyurgerov, M. B., Uvarov, V. N. & Kostjashkina, T. E. Mass balance and runoff of Tuyuksu Glacier and the north slope of the Zailiyskiy Alatau range, Tien Shan. Z. Gletscherk. Glazialgeol. 32, 41–54 (1996).

    Google Scholar 

  78. 78

    Siegfried, T. et al. Will climate change exacerbate or mitigate water stress in Central Asia? Clim. Change 112, 881–889 (2012).

    Article  Google Scholar 

  79. 79

    Bernauer, T. & Siegfried, T. Climate change and international water conflict in Central Asia. J. Peace Res. 49, 227–239 (2012).

    Article  Google Scholar 

  80. 80

    Dikikh, A. N. & Hagg, W. Climate driven changes of glacier runoff in the Issyk-Kul basin, Kyrgyzstan. Z. Gletscherk. Glazialgeol. 39, 75–86 (2004).

    Google Scholar 

  81. 81

    Aizen, V. B., Aizen, E. M. & Kuzmichenok, V. A. Geo-informational simulation of possible changes in Central Asian water resources. Global Planet. Change 56, 341–358 (2007).

    Article  Google Scholar 

  82. 82

    Ming, J. et al. Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmos. Res. 92, 114–123 (2009).

    CAS  Article  Google Scholar 

  83. 83

    Scherler, D., Bookhagen, B. & Strecker, M. R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosci. 4, 156–159 (2011).

    CAS  Article  Google Scholar 

  84. 84

    Marchenko, S. S., Gorbunov, A. P. & Romanovsky, V. E. Permafrost warming in the Tien Shan Mountains, Central Asia. Global Planet. Change 56, 311–327 (2007).

    Article  Google Scholar 

  85. 85

    Aizen, V., Aizen, E., Glazirin, G. & Loaiciga, H. A. Simulation of daily runoff in Central Asian alpine watersheds. J. Hydrol. 238, 15–34 (2000).

    Article  Google Scholar 

  86. 86

    Jansky, B., Sobr, M. & Yerokhin, S. Typology of high mountain lakes of Kyrgyzstan with regard to the risk of their rupture. Limnol. Rev. 6, 135–140 (2006).

    Google Scholar 

  87. 87

    Bolch, T. et al. Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat. Hazards 59, 1691–1714 (2011).

    Article  Google Scholar 

  88. 88

    Narama, C., Duishonakunov, M., Kääb, A., Daiyrov, M. & Abdrakhmatov, K. The 24 July 2008 outburst flood at the western Zyndan glacier lake and recent regional changes in glacier lakes of the Teskey Ala-Too range, Tien Shan, Kyrgyzstan. Nat. Hazards Earth Syst. 10, 647–659 (2010).

    Article  Google Scholar 

  89. 89

    Watkins, K. Beyond Scarcity: Power, Poverty and the Global Water Crisis (United Nations Development Programme, 2006).

    Google Scholar 

  90. 90

    Kezer, K. & Matsuyama, H. Decrease of river runoff in the Lake Balkhash basin in Central Asia. Hydrol. Process 20, 1407–1423 (2006).

    Article  Google Scholar 

  91. 91

    Thevs, N. Water scarcity and allocation in the Tarim Basin: decision structures and adaptations on the local level. J. Curr. Chin. Affairs 40, 113–137 (2011).

    Article  Google Scholar 

  92. 92

    Kramer, M. Integrative and Sustainable Water Management: Potential for Cooperation between Germany and Central Asia (Gabler/Springer, 2010) [in German].

    Google Scholar 

  93. 93

    Klerx, J. & Imanackunov, B. Lake Issyk-Kul: Its Natural Environment (NATO Science Series, 2003).

    Google Scholar 

  94. 94

    Hagg, W. & Braun, L. N. in Climate and Hydrology in Mountain Areas (eds De Jong, C., Ranzi, R. & Collins, D.) 263–275 (Wiley, 2005).

    Google Scholar 

  95. 95

    Böhner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35, 279–295 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the ACQWA project (Framework Program 7 of the European Commission under Grant Nr. 212250; www.acqwa.ch) and the SuMaRiO project (funded by the German Ministry of Education and Science, BMBF, FKZ: 01 LL 0918 A). T.B. was partly funded by Deutsche Forschungsgemeinschaft (DFG, code: BO 3199/2-1). We thank V. Aizen for his critical comments on a former version of the manuscript.

Author information

Affiliations

Authors

Contributions

The concept was developed by A.S., T.B. and M.S.; T.B. and O.S. contributed data. All authors were involved in the paper writing process.

Corresponding author

Correspondence to Annina Sorg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1019 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sorg, A., Bolch, T., Stoffel, M. et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Clim Change 2, 725–731 (2012). https://doi.org/10.1038/nclimate1592

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing