Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record

Abstract

Large discrepancies exist between twentieth-century tropical Indo-Pacific sea surface temperature trends determined from present reconstructions. These discrepancies prevent an unambiguous verification and validation of climate models used for projections of future climate change. Here we demonstrate that a more consistent and robust trend among all the reconstructions is found by filtering each data set to remove El Niño/Southern Oscillation (ENSO), which is represented not by a single-index time series but rather by an evolving dynamical process. That is, the discrepancies seem to be largely the result of different estimates of ENSO variability in each reconstruction. The robust ENSO-residual trend pattern represents a strengthening of the equatorial Pacific temperature gradient since 1900, owing to a systematic warming trend in the warm pool and weak cooling in the cold tongue. Similarly, the ENSO-residual trend in sea-level pressure represents no weakening of the equatorial Walker circulation over the same period. Additionally, none of the disparate estimates of post-1900 total eastern equatorial Pacific sea surface temperature trends are larger than can be generated by statistically stationary, stochastically forced empirical models that reproduce ENSO evolution in each reconstruction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unfiltered SST trends, 1900–2010.
Figure 2: Canonical peak ENSO pattern, determined by regressing ocean temperature and wind stress anomalies on the leading principal component (PC1) of 1958–2007 SODA seasonal mean SST anomalies. PC1 explains 34.7% of the total seasonal mean SST variance.
Figure 3: SODA ENSO-residual ocean temperature and wind-stress trend pattern and time series.
Figure 4: HadISST (blue), ERSST (red), KAPLAN (cyan) and COBE (black) time series.
Figure 5: ENSO-residual SST trends, 1900–2010.
Figure 6: HadSLP2r anomalies for the 1870–2010 period (relative to a 1891–2010 climatology) smoothed with a ten-year running mean.

Similar content being viewed by others

References

  1. Diaz, H. F. & Markgraf, V. El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation (Cambridge Univ. Press, 1992).

    Google Scholar 

  2. Glantz, M. H. Currents of Change: Impacts of El Nino and La Nina on Climate and Society (Cambridge Univ. Press, 2001).

    Google Scholar 

  3. Alexander, M. A. et al. The Atmospheric Bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).

    Article  Google Scholar 

  4. Solomon, A. & the US CLIVAR Decadal Predictability Working Group, Distinguishing the roles of natural and anthropogenically forced decadal climate variability: Implications for prediction? Bull. Am. Meteorol. Soc. 92, 141–156 (2011).

    Article  Google Scholar 

  5. Deser, C., Phillips, A. S. & Alexander, M. A. Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett. 37, L10701 (2010).

    Article  Google Scholar 

  6. Shin, S-I. & Sardeshmukh, P. D. Critical influence of the pattern of Tropical Ocean warming on remote climate trends. Clim. Dynam. 36, 1577–1591 (2011).

    Article  Google Scholar 

  7. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci. 3, 391–396 (2010).

    Article  CAS  Google Scholar 

  8. Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).

    Article  Google Scholar 

  9. Sun, D-Z. & Liu, Z. Dynamic ocean-atmosphere coupling: A thermostat for the tropics. Science 272, 1148–1150 (1996).

    Article  CAS  Google Scholar 

  10. Seager, R. & Murtugudde, R. Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J. Clim. 10, 521–534 (1997).

    Article  Google Scholar 

  11. Cane, M. A. et al. Twentieth century sea surface temperature trends. Science 275, 957–960 (1997).

    Article  CAS  Google Scholar 

  12. Knutson, T. R. & Manabe, S. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Clim. 8, 2181–2199 (1995).

    Article  Google Scholar 

  13. Meehl, G. A. & Washington, W. El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature 382, 56–60 (1996).

    Article  CAS  Google Scholar 

  14. Xie, S-P. et al. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article  Google Scholar 

  15. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  16. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  17. Schneider, E. K., Lindzen, R. S. & Kirtman, B. P. A tropical influence on global climate. J. Atmos. Sci. 54, 1349–1358 (1997).

    Article  Google Scholar 

  18. Newman, M., Sardeshmukh, P. D. & Penland, C. How important is air-sea coupling in ENSO and MJO evolution? J. Clim. 22, 2958–2977 (2009).

    Article  Google Scholar 

  19. Compo, G. P. & Sardeshmukh, P. D. Removing ENSO-related variations from the climate record. J. Clim. 23, 1957–1978 (2010).

    Article  Google Scholar 

  20. Thompson, D. W. J., Wallace, J. M., Jones, P. D. & Kennedy, J. J. Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Clim. 22, 6120–6141 (2009).

    Article  Google Scholar 

  21. Tung, K. K. & Zhou, J. The Pacific’s response to surface heating in 130 yr of SST: La-Niña-like or El Niño-like? J. Atmos. Sci. 67, 2649–2657 (2010).

    Article  Google Scholar 

  22. Penland, C. & Matrosova, L. Studies of El Nino and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Clim. 19, 5796–5815 (2006).

    Article  Google Scholar 

  23. McPhaden, M. J. Genesis and evolution of the 1997–1998 El Niño. Science 283, 950–954 (1999).

    Article  CAS  Google Scholar 

  24. Penland, C. & Sardeshmukh, P. D. The optimal growth of tropical sea surface temperature anomalies. J. Clim. 8, 1999–2024 (1995).

    Article  Google Scholar 

  25. Newman, M., Shin, S-I. & Alexander, M. A. Natural variation in ENSO flavors. Geophys. Res. Lett. 38, L14705 (2011).

    Article  Google Scholar 

  26. Penland, C. & Magorian, T. Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Clim. 6, 1067–1076 (1993).

    Article  Google Scholar 

  27. Newman, M., Alexander, M. A. & Scott, J. D. An empirical model of tropical ocean dynamics. Clim. Dynam. 37, 1823–1841 (2011).

    Article  Google Scholar 

  28. Penland, C. & Matrosova, L. A balance condition for stochastic numerical models with application to the El Niño-Southern Oscillation. J. Clim. 7, 1352–1372 (1994).

    Article  Google Scholar 

  29. Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weath. Rev. 97, 163–172 (1969).

    Article  Google Scholar 

  30. Karnauskas, K. B., Seager, R., Kaplan, A., Kushnir, Y. & Cane, M. A. Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Clim. 22, 4316–4321 (2009).

    Article  Google Scholar 

  31. Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Article  CAS  Google Scholar 

  32. Bunge, L. & Clarke, A. J. A verified estimation of the El Nino index NINO3.4 since 1877. J. Clim. 22, 3979–3992 (2009).

    Article  Google Scholar 

  33. Compo, G. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

    Article  Google Scholar 

  34. Guan, B. & Nigam, S. Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend. J. Clim. 21, 2790–2809 (2008).

    Article  Google Scholar 

  35. Lau, K-M. & Weng, H. Interannual, decadal–interdecadal, and global warming signals in sea surface temperature during 1955–1997. J. Clim. 12, 1257–1267 (1999).

    Article  Google Scholar 

  36. Hoerling, M. & Kumar, A. A perfect ocean for drought. Science 299, 691–694 (2003).

    Article  CAS  Google Scholar 

  37. Solomon, A. & Newman, M. Decadal predictability of tropical Indo-Pacific Ocean temperature trends due to anthropogenic forcing. Geophys. Res. Lett. 38, L02703 (2011).

    Article  Google Scholar 

  38. Collins, M. & the CMIP Modelling Groups, El Niño- or La Niña-like climate change? Clim. Dynam. 24, 89–104 (2005).

    Article  Google Scholar 

  39. Hasselmann, K. Stochastic climate models. Part I. Theory. Tellus 28, 474–485 (1976).

    Article  Google Scholar 

  40. Moore, A. M. & Kleeman, R. The nonnormal nature of El Niño and intraseasonal variability. J. Clim. 12, 2965–2982 (1999).

    Article  Google Scholar 

  41. Borges, M. & Sardeskmukh, P. D. Application of perturbation theory to the stability analysis of realistic atmospheric flows. Tellus 49, 321–336 (1997).

    Article  Google Scholar 

  42. Penland, C. & Sardeshmukh, P. D. Error and sensitivity analysis of geophysical systems. J. Clim. 8, 1988–1998 (1995).

    Article  Google Scholar 

  43. Carton, J. A. & Giese, B. S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weath. Rev. 136, 2999–3017 (2008).

    Article  Google Scholar 

  44. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  45. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  46. Kaplan, A. et al. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. 103, 18567–18589 (1998).

    Article  Google Scholar 

  47. Ishii, M., Shouji, A., Sugimoto, S. & Matsumoto, T. Objective analyses of SST and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol. 25, 865–879 (2005).

    Article  Google Scholar 

  48. Allan, R. J. & Ansell, T. J. A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850–2004. J. Clim. 19, 5816–5842 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Barsugli, C. Penland, M. Alexander, G. Compo, P. Sardeshmukh, R. Dole, B. Neff, R. Webb and C. Deser for comments. This work was supported by grants from the NOAA OAR CVP programme and NSF AGS 1125561 and 1035325.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the work presented in this paper, including the design of the study, analysis of the results and writing the manuscript.

Corresponding author

Correspondence to Amy Solomon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomon, A., Newman, M. Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nature Clim Change 2, 691–699 (2012). https://doi.org/10.1038/nclimate1591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing