Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Marginalization of end-use technologies in energy innovation for climate protection

Abstract

Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: An analytical framework of the innovation system for energy technologies.
Figure 2: Global mobilization of financial resources for energy technologies.
Figure 3: Technological emphasis of directed innovation efforts.

References

  1. Department of Energy Quadrennial Technology Review (DOE, 2011).

  2. European Commission COM 4900. Work Programme 2011. Cooperation. Theme 5: Energy (EC, 2010).

  3. Gallagher, K. S., Anadon, L. D., Kempener, R. & Wilson, C. Trends in investments in global energy research, development, and demonstration. WIRes Clim. Change 2, 373–427 (2011).

    Article  Google Scholar 

  4. Riahi, K., Grubler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast.Soc. 74, 887–935 (2007).

    Article  Google Scholar 

  5. International Energy Agency World Energy Outlook (IEA, 2011).

  6. Hoffert, M. I. Farewell to Fossil Fuels? Science 329, 1292–1294 (2010).

    CAS  Article  Google Scholar 

  7. Hoffert, M. I. et al. Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298, 981–987 (2002).

    CAS  Article  Google Scholar 

  8. Myhrvold, N. P. & Caldeira, K. Greenhouse gases, climate change and the transition from coal to low-carbon electricity. Environ. Res. Lett. 7, 014019 (2012).

    Article  CAS  Google Scholar 

  9. Sathaye, J. et al. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency. Energy Efficiency 2, 317–337 (2009).

    Article  Google Scholar 

  10. Ürge-Vorsatz, D. & Metz, B. Energy efficiency: how far does it get us in controlling climate change? Energy Efficiency 2, 87–94 (2009).

    Article  Google Scholar 

  11. Grubler, A. et al. in Global Energy Assessment (eds Johansson, T. B., Nakicenovic, N., Patwardhan, A. & Gomez-Echeverri, L.) Ch. 24 (Cambridge University Press, 2012).

    Google Scholar 

  12. Heymann, M. Signs of Hubris: The shaping of wind technology styles in Germany, Denmark, and the United States, 1940–1990 Tech. Cult. 39, 641–670 (1998).

    Article  Google Scholar 

  13. Verbong, G. & Geels, F. The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960–2004). Energy Policy 35, 1025–1037 (2007).

    Article  Google Scholar 

  14. Astrand, K. & Neij, L. An assessment of governmental wind power programmes in Sweden–using a systems approach. Energy Policy 34, 277–296 (2006).

    Article  Google Scholar 

  15. Garud, R. & Karnoe, P. Bricolage versus breakthrough: Distributed and embedded agency in technology entrepreneurship. Res. Pol. 32, 277–300 (2003).

    Article  Google Scholar 

  16. Kamp, L., Smits, R. & Andriesse, C. Notions on learning applied to wind turbine development in the Netherlands and Denmark. Energy Policy 32, 1625–1637 (2003).

    Article  Google Scholar 

  17. Van den Wall Bake, J. D., Junginger, M., Faaij, A., Poot, T. & Walter, A. Explaining the experience curve: Cost reductions of Brazilian ethanol from sugarcane. Biomass Bioenergy 33, 644–658 (2009).

    Article  Google Scholar 

  18. Deutch, J. M. & Lester, R. K. Making Technology Work: Applications in Energy and the Environment (Cambridge Univ. Press, 2004).

    Google Scholar 

  19. Bush, V. Science: the Endless Frontier (US Government Printing Office, 1945).

    Google Scholar 

  20. Mowery, D. & Rosenberg, N. The influence of market demand upon innovation: A critical review of some recent empirical studies. Res. Pol. 8, 102–153 (1979).

    Article  Google Scholar 

  21. Freeman, C. Economics of technical change: A critical review. Cambridge J. Econ. 18, 463–514 (1994).

    Article  Google Scholar 

  22. Schot, J. & Geels, F. W. Strategic niche management and sustainable innovation journeys: theory, findings, research agenda, and policy. Technol. Anal. Strateg. 20, 537–554 (2008).

    Article  Google Scholar 

  23. Nemet, G. F. Demand-pull, technology-push, and government-led incentives for non-incremental technical change. Res. Pol. 38, 700–709 (2009).

    Article  Google Scholar 

  24. Lundvall, B.-A. Why study national systems and national styles of innovation? Technol. Anal. Strateg. 10, 407–421 (1998).

    Article  Google Scholar 

  25. Nelson, R. R. & Winter, S. G. In search of useful theory of innovation. Res. Pol. 6, 36–76 (1977).

    Article  Google Scholar 

  26. Edquist, C. & Johnson, B. in Systems of Innovation (ed. C. Edquist) 41–63 (Pinter, 1997).

    Google Scholar 

  27. Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S. & Smits, R. E. H. M. Functions of innovation systems: A new approach for analysing technological change. Technol. Forecast. Soc 74, 413–432 (2007).

    Article  Google Scholar 

  28. Alkemade, F. & Suurs, R. A. A. Patterns of expectations for emerging sustainable technologies. Technol. Forecast. Soc. 79, 448–456 (2012).

    Article  Google Scholar 

  29. Jacobsson, S. & Lauber, V. The politics and policy of energy system transformation—explaining the German diffusion of renewable energy technology. Energy Policy 34, 256–276 (2006).

    Article  Google Scholar 

  30. Carlsson, B. & Stankiewicz, R. On the nature, function and composition of technological systems. J. Evol. Econ. 1, 93–118 (1991).

    Article  Google Scholar 

  31. Rogers, E. M. Diffusion of Innovations (Free Press, 2003).

    Google Scholar 

  32. Fouquet, R. The slow search for solutions: Lessons from historical energy transitions by sector and service. Energy Policy 38, 6586–6596 (2010).

    Article  Google Scholar 

  33. Geels, F. W. From sectoral systems of innvation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Res. Pol. 33, 897–920 (2004).

    Article  Google Scholar 

  34. Freeman, C. & Soete, L. The Economics of Industrial Innovation 3rd edn (MIT Press, 2000).

    Google Scholar 

  35. Joint report by IEA, OPEC, OECD and World Bank on fossil-fuel and other energy subsidies: An update of the G20 Pittsburgh and Toronto Commitments (2011).

  36. Weiss, M., Junginger, M., Patel, M. K. & Blok, K. A review of experience curve analyses for energy demand technologies. Technol. Forecast. Soc. 77, 411–428 (2010).

    Article  Google Scholar 

  37. Wene, C.-O. Experience Curves for Energy Technology Policy (Internationl Energy Agency, 2000).

    Google Scholar 

  38. Griliches, Z. R&D and productivity: Measurement issues and econometric results. Science 237, 31–35 (1987).

    CAS  Article  Google Scholar 

  39. European Commission SEC 1295. Commission Staff Working Document. A Technology Roadmap for the Communication on Investing in the Development of Low Carbon Technologies (EC, 2009).

  40. National Research Council Energy Research at DoE: Was it Worth It? Energy Efficiency and Fossil Energy Research 1978–2000 (NRC, 2001).

  41. National Research Council Prospective Evaluation of Applied Energy Research and Development at DoE (Phase Two) (NRC, 2007).

  42. Fri, R. W. The Role of knowledge: Technological innovation in the energy system. Energy J. 24, 51–74 (2003).

    Article  Google Scholar 

  43. Van Vuuren, D. et al. Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials. Energy Policy 37, 5125–5139 (2009).

    Article  Google Scholar 

  44. Luderer, G. et al. The Economics of Decarbonization — Results from the RECIPE Model Intercomparison (Potsdam Institute, 2009).

    Google Scholar 

  45. Edenhofer, O. et al. The Economics of low stabilization: Model comparison of mitigation strategies and costs. Energy J. 31, 11–48 (2010).

    Google Scholar 

  46. Pacala, S. & Socolow, R. Stabilisation wedges: Solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).

    CAS  Article  Google Scholar 

  47. Grubler, A. & Riahi, K. Do governments have the right mix in their energy R&D portfolios? Carbon Manag. 1, 79–87 (2010).

    Article  Google Scholar 

  48. Fisher, B. S. et al. in IPCC Climate Change 2007: Mitigation (eds Metz, B. et al.) 169–251 (Cambridge Univ. Press, 2007).

    Google Scholar 

  49. Hanaoka, T., Kainuma, M. & Matsuoka, Y. The role of energy intensity improvement in the AR4 GHG stabilization scenarios. Energy Efficiency 2, 95–108 (2009).

    Article  Google Scholar 

  50. Amann, M. et al. Potential and Costs for Greenhouse Gas Mitigation in Annex 1 Countries: Initial Results of the GAINS Mode. (IIASA, 2009).

    Google Scholar 

  51. Murphy, R. & Jaccard, M. Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US. Energy Policy, 39, 7146–7155 (2011).

    Article  Google Scholar 

  52. McCollum, D., Krey, V. & Riahi, K. An integrated approach to energy sustainability. Nature Clim. Change 1, 428–429 (2011).

    Article  Google Scholar 

  53. Levine, M. et al. in IPCC Climate Change 2007: Mitigation (eds Metz, B. et al.) 387–447 (Cambridge Univ. Press, 2007).

    Google Scholar 

  54. Lutsey, N. & Sperling, D. Energy efficiency, fuel economy, and policy implications. Transp. Res. Rec. 1941, 8–17 (2005).

    Article  Google Scholar 

  55. D'Agostino, A. L. et al. What's the state of energy studies research?: A content analysis of three leading journals from 1999 to 2008. Energy 36, 508–519 (2011).

    Article  Google Scholar 

  56. Nakicenovic, N. & Rogner, H. H. Financing global energy perspectives to 2050. OPEC Rev. 20, 1–23 (1996).

    Article  Google Scholar 

  57. Norgard, J. S. & Christensen, B. L. Towards sustainable energy welfare. Persp. Energy 2, 313–332 (1993).

    Google Scholar 

  58. Shenhua reaps huge profits from CTL project. China daily (16 May 2011); available at http://www.chinadaily.com.cn/bizchina/2011-05/16/content_12515142.htm

  59. Lynas, M. Conflicted roles over renewables. Nature Clim. Change 1, 228–229 (2011).

    Article  Google Scholar 

  60. Edenhofer, O. Different views ensure IPCC balance. Nature Clim. Change 1, 229–230 (2011).

    Article  Google Scholar 

  61. Edenhofer, O. et al. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  62. Teske, S. et al. Energy [R]evolution 2010: A sustainable world energy outlook. Energy Efficiency 4, 409–433 (2011).

    Article  Google Scholar 

  63. Unruh, G. Understanding carbon lock-in. Energy Policy 28, 817–830 (2000).

    Article  Google Scholar 

  64. Moe, E. Energy, industry and politics: Energy, vested interests, and long-term economic growth and development. Energy 35, 1730–1740 (2010).

    Article  Google Scholar 

  65. Koomey, J. G. Cold Cash, Cool Climate, Science Based Advice for Ecological Entrepreneurs 157–160 (Analytics, 2012).

    Google Scholar 

  66. Sovacool, B. K. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States. Energy Policy 37, 4500–4513 (2009).

    Article  Google Scholar 

  67. International Energy Agency Energy Technology RD&D 2009 edn. (IEA, 2009).

  68. Dosi, G. Technological Paradigms and Technological Trajectories: A suggested interpretation of the determinants and directions of technical change. Res. Pol. 11, 147–162 (1982).

    Article  Google Scholar 

  69. Galiana, I. & Green, C. Let the global technology race begin. Nature 462, 570–571 (2009).

    CAS  Article  Google Scholar 

  70. Meadowcroft, J. What about the politics? Sustainable development, transition management, and long term energy transitions. Pol. Sci. 42, 323–340 (2009).

    Article  Google Scholar 

  71. Sandén, B. A. & Azar, C. Near-term technology policies for long-term climate targets: Economy wide versus technology specific approaches. Energy Policy 33, 1557–1576 (2005).

    Article  Google Scholar 

  72. Torvanger, A. & Meadowcroft, J. The political economy of technology support: Making decisions about carbon capture and storage and low carbon energy technologies. Global Environ. Chang. 21, 303–312 (2011).

    Article  Google Scholar 

  73. Lovins, A. et al. Small is Profitable: The Hidden Economic Benefits of Making Electrical Resources the Right Size (Rocky Mountain Institute, 2003).

    Google Scholar 

  74. Gallagher, K. S., Holdren, J. P. & Sagar, A. D. Energy-technology innovation. Annu. Rev. Env.Resour. 31, 193–237 (2006).

    Article  Google Scholar 

  75. Hekkert, M. P. & Negro, S. O. Functions of innovation systems as a framework to understand sustainable technological change: Empirical evidence for earlier claims. Technol. Forecast. Soc. 76, 584–594 (2009).

    Article  Google Scholar 

  76. Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S. & Rickne, A. Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Res. Pol. 37, 407–429 (2008).

    Article  Google Scholar 

  77. Archibugi, D. & Coco, A. Measuring technological capabilities at the country level: A survey and a menu for choice. Res. Pol. 34, 175–194 (2005).

    Article  Google Scholar 

  78. Hughes, N. & Strachan, N. Methodological review of UK and international low carbon scenarios. Energy Policy 38, 6056–6065 (2010).

    Article  Google Scholar 

  79. Kitous, A., Criqui, P., Bellevrat, E. & Chateau, B. Transformation patterns of the worldwide energy system — Scenarios for the century with the POLES model. Energy J. 31, 49–82 (2010).

    Article  Google Scholar 

  80. Riahi, K. et al. Energy Pathways for Sustainable Development. The Global Energy Assessment (Cambridge Univ. Press, 2012).

    Google Scholar 

  81. HMG 2050 Pathways Analysis (HM Government, 2010).

  82. Nemet, G. F. Interim monitoring of cost dynamics for publicly supported energy technologies. Energy Policy 37, 825–835 (2009).

    Article  Google Scholar 

  83. European Commission Investing in the development of low carbon technologies (SET-Plan) COM(2009). 519 final (EC, 2009).

  84. European Commission SEC 1296. R&D Investment in the Priority Technologies of the European Strategic Energy Technology Plan. Commission Staff Working Document. Accompanying Document to The Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions On Investing in the Development of Low Carbon Technologies (SET-Plan) (EC, 2009).

  85. Department of Energy Quadrennial Technology Review Volume II (US DoE, 2011).

  86. President's Committee of Advisors on Science & Technology Accelerating the Pace of Change in Energy Technologies (PCAST, 2010).

  87. Marlay, R. US–China Clean Energy Research Center Overview (CERC, 2010); Available at www.us-china-cerc.org

    Google Scholar 

  88. International Energy Agency Energy Technology Initiatives (IEA, 2010) Updated with data available at www.iea.org/techno/index.asp [Accessed Oct-2011].

  89. ARPA-E Project Database. Accessed October 2011. (DoE, 2011); available at arpa-e.energy.gov/ProgramsProjects/ViewAllProjects.aspx

  90. RCUK Energy Programme What We're Funding. http://www.rcuk.ac.uk/research/xrcprogrammes/energy/EnergyResearch/Pages/home.aspx

  91. Greenwood, C., Usher, E. & Sonntag-O-Brien, V. (eds) Global Trends in Sustainable Energy Investment 2009: Analysis of Trends and Issues in the Financing of Renewable Energy and Energy Efficiency (UNEP, 2009).

    Google Scholar 

  92. International Energy Agency World Energy Outlook (IEA, 2008).

  93. International Energy Agency World Energy Outlook (IEA, 2009).

  94. Wilson, C. & Grubler, A. A Comparative Analysis of Annual Market Investments in Energy Supply and End-Use Technologies (IIASA, 2011).

    Google Scholar 

  95. Grubler, A. in The Encyclopedia of Earth (ed. Cleveland, C. J.) (Environmental Information Coalition, National Council for Science and the Environment, 2008); available at http://www.eoearth.org/article/Energy_transitions

    Google Scholar 

  96. Abernathy, W. J. & Wayne, K. Limits of the learning curve. Harvard Business Review 52, 109–119 (1974).

    Google Scholar 

  97. Colpier, U. C. & Cornland, D. The economics of the combined cycle gas turbine — an experience curve analysis. Energy Policy 30, 309–316 (2002).

    Article  Google Scholar 

  98. Department of Energy Forecast of Equipment Price Trends for Central Air Conditioners, Heat Pumps and Furnaces Appendix 8-J (US DoE, 2011).

  99. Grubler, A. The costs of the French nuclear scale-up: A case of negative learning by doing. Energy Policy 38, 5174–5188 (2010).

    Article  Google Scholar 

  100. Irwin, D. A. & Klenow, P. J. Learning-by-doing spillovers in the semiconductor industry. J. Polit. Econ. 102, 1200–1227 (1994).

    Article  Google Scholar 

  101. Iwafune, Y. Technology Progress Dynamics of Compact Fluorescent Lamps. IR-00-009 (IIASA, 2000).

    Google Scholar 

  102. Joskow, P. L. & Rose, N. L. The effects of technological change, experience, and environmental regulation on the construction cost of coal-burning generating units. RAND J. Econ. 16, 1–27 (1985).

    Article  Google Scholar 

  103. Kiss, B., Neij, L. & Jakob, M. in Global Energy Assessment (eds Johansson, T. B., Nakicenovic, N., Patwardhan, A. & Gomez-Echeverri, L.) Ch. 24 (Cambridge Univ. Press, 2012).

    Google Scholar 

  104. Maycock, P. D. & Wakefield, G. F. Business Analysis of Solar Photovoltaic Energy Conversion (Texas Instruments, 1975).

    Google Scholar 

  105. McDonald, A. & Schrattenholzer, L. Learning rates for energy technologies. Energy Policy 29, 255–261 (2001).

    Article  Google Scholar 

  106. Nemet, G. F. Subsidies for new technologies and knowledge spillovers from learning by doing. J. Policy Anal. Manag. 31, 601–622 (2012).

    Article  Google Scholar 

  107. Rubin, E. S., Yeh, S., Antes, M., Berkenpas, M. & Davison, J. Use of experience curves to estimate the future cost of power plants with CO2 capture. Int. J. Greenh. Gas Con. 1, 188–197 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the many useful discussions with our fellow authors of the Global Energy Assessment chapter on the Energy Technology Innovation System11: Francisco Aguayo, Leon Clarke, Laura Diaz Anadon, Marko Hekkert, Kejun Jiang, Daniel Kammen, Ruud Kempener, Osamu Kimura, Bernadette Kiss, Lynn Mytelka, Lena Neij and Anastasia O'Rourke.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the intellectual content. C.W. and A.G. led the data collection and drafting of the text with contributions from K.S.G. and G.N. All authors reviewed and edited the text.

Corresponding author

Correspondence to Charlie Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 212 kb)

Supplementary Information

Supplementary Information (XLSX 176 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilson, C., Grubler, A., Gallagher, K. et al. Marginalization of end-use technologies in energy innovation for climate protection. Nature Clim Change 2, 780–788 (2012). https://doi.org/10.1038/nclimate1576

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1576

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing