Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The hydrology of the humid tropics

Abstract

Hydrological processes in the humid tropics differ from other regions in having greater energy inputs and faster rates of change, including human-induced change. Human influences on population growth, land use and climate change will profoundly influence tropical hydrology, yet understanding of key hydrological interactions is limited. We propose that efforts to collect tropical data should explicitly emphasize characterizing moisture and energy fluxes from below the ground surface into the atmosphere. Research needs to chiefly involve field-based characterizations and modelling of moisture cycling and catchment processes, as well as long-term data acquisition and organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of the tropical hydrological cycle with water fluxes represented by dashed lines.
Figure 2: Average discharge per unit drainage area as a function of latitude at the river mouth, showing differences between tropical and temperate latitudes.
Figure 3: Example of how evapotranspiration rates in disturbed rainforests in the dry season are related to land-use history.
Figure 4: Schematic of local and regional hydrological response to deforestation.
Figure 5: Number of precipitation stations in the Global Historical Climatology Network data set for each year.

Similar content being viewed by others

References

  1. Fekete, B. M., Vorosmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles 16, 1042 (2002).

    Article  CAS  Google Scholar 

  2. Food and Agriculture Organization Global Forest Resources Assessment 2005 (FAO, 2005).

  3. Klein, R. Scale-dependent models for atmospheric flows. Annu. Rev. Fluid Mech. 42, 249–274 (2010).

    Article  Google Scholar 

  4. Zuluaga, M. D., Hoyos, C. D. & Webster, P. J. Spatial and temporal distribution of latent heating in the South Asian Monsoon region. J. Clim. 23, 2010–2015; 2017–2029 (2010).

    Article  Google Scholar 

  5. Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    Article  CAS  Google Scholar 

  6. Wu, S., Bras, R. & Barros, A. P. Sensitivity of channel profiles to precipitation properties in mountain ranges. J. Geophys. Res. 111, F01024 (2006).

    Google Scholar 

  7. Giambelluca, T. W., Nullet, M. A., Schroeder, T. A. Rainfall Atlas of Hawai'i (Dept of Land and Natural Resources, State of Hawai'i, 1986).

    Google Scholar 

  8. Hansen, M. C. et al. Humid tropical forest clearing from 2000 to 2005 quantified using multi-temporal and multi-resolution remotely sensed data. Proc. Natl Acad. Sci. USA 105, 9439–9444 (2008).

    Article  Google Scholar 

  9. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  CAS  Google Scholar 

  10. Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T. A. & Laurance, W. F. Changing ecology of tropical forests: evidence and drivers. Annu. Rev. Ecol. Syst. 40, 529–549 (2009).

    Article  Google Scholar 

  11. IPCC Climate Change and Water. IPCC Technical Paper VI (eds Bates, B. C., Kundzewicz, Z. W., Wu, S. & Palutikof, J. P.) (IPCC Secretariat, 2008).

  12. Stallard, R. F. & Edmond, J. M. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res. 88, 9671–9688 (1983).

    Article  CAS  Google Scholar 

  13. McDowell, W. H. & Asbury, C. E. Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnol. Oceanogr. 39, 111–125 (1994).

    Article  CAS  Google Scholar 

  14. Milliman, J. D. Sediment discharge to the ocean from small mountainous rivers: the New Guinea example. Geo-Marine Lett. 15, 127–133 (1995).

    Article  Google Scholar 

  15. Lyons, W. B., Nezat, C. A., Carey, A. E. & Hicks, D. M. Organic carbon fluxes to the ocean from high-standing islands. Geology 30, 443–446 (2002).

    Article  CAS  Google Scholar 

  16. Goldsmith, S. T., Carey, A. E., Lyons, W. B., Kao, S-J. & Chen, J. Geochemical fluxes from the ChoShui River during Typhoon Mindulle, July 2004. Geology 36, 483–486 (2008).

    Article  CAS  Google Scholar 

  17. Hilton, R. G., Galy, A. & Hovius, N. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nature Geosci. 1, 759–762 (2008).

    Article  CAS  Google Scholar 

  18. Lloret, E. et al. Comparison of dissolved inorganic and organic carbon yields and fluxes in the watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies). Chem. Geol. 280, 65–78 (2011).

    Article  CAS  Google Scholar 

  19. Liu, C. & Zipser, E. J. “Warm rain” in the tropics: seasonal and regional distributions based on 9 yr of TRMM data. J. Clim. 22, 767–779 (2008).

    Article  Google Scholar 

  20. Minasny, B. & Hartemink, A. E. Predicting soil properties in the tropics. Earth Sci. Rev. 106, 52–62 (2011).

    Article  Google Scholar 

  21. Meade, R. H. in Large Rivers (ed. Gupta, A.) 45–63 (Wiley, 2007).

    Book  Google Scholar 

  22. Harmon, R. H. et al. Geochemistry of four tropical montane watersheds, Central Panama. Appl. Geochem. 24, 624–640 (2009).

    Article  CAS  Google Scholar 

  23. Lloret, E. et al. Comparison of dissolved inorganic and organic carbon yields and fluxes in the watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies). Chem. Geol. 280, 65–78 (2011).

    Article  CAS  Google Scholar 

  24. Giambelluca, T. W., Ziegler, A. D., Nullet, M. A., Dao, T. M. & Tran, L. T. Transpiration in a small tropical forest patch. Agr. For. Meteorol. 117, 1–22 (2003).

    Article  Google Scholar 

  25. Ziegler, A. D. et al. Hydrological consequences of landscape fragmentation in mountainous northern Vietnam: buffering of Hortonian overland flow. J. Hydrol. 337, 52–67 (2007).

    Article  Google Scholar 

  26. Hendrickx, J. M. H., Bastiaanssen, W. G. M., Noordman, E. J. M., Hong, S. & Calvo Gobbeti, L. E. in The Rio Chagres, Panama: A Multidisciplinary Profile of a Tropical Watershed (ed. Harmon, R. S.) 315–324 (Springer, 2005).

    Book  Google Scholar 

  27. Von Randow, C. et al. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol. 78, 5–26 (2004).

    Article  Google Scholar 

  28. Hölscher, D., Sá, T. de, A., Bastos, T. X., Denich, M. & Fölster, H. Evaporation from young secondary vegetation in eastern Amazonia. J. Hydrol. 193, 293–305 (1997).

    Article  Google Scholar 

  29. Fox, J. et al. Shifting cultivation: a new old paradigm for managing tropical forests. Bioscience 50, 521–528 (2000).

    Article  Google Scholar 

  30. Nepstad, D. C., Stickler, C. M., Soares-Filho, B. & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Phil. Trans. R. Soc. B 363, 1737–1746 (2008).

    Article  Google Scholar 

  31. Ziegler, A. D., Fox, J. M. & Xu, J. The rubber juggernaut. Science 324, 1024–1025 (2009).

    Article  CAS  Google Scholar 

  32. Costa, M. H. in Forests, Water and People in the Humid Tropics (eds Bonell, M. & Bruijnzeel, L. A.) 590–597 (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  33. Chappell, N. A., Douglas, I., Hanapi, J. M. & Tych, W. Sources of suspended sediment within a tropical catchment recovering from selective logging. Hydrol. Processes 18, 685–701 (2004).

    Article  Google Scholar 

  34. Walsh, R. P. D. et al. Long-term responses of rainforest erosional systems at different spatial scales to selective logging and climatic change. Phil. Trans. R. Soc. B. 366, 3340–3353 (2011).

    Article  CAS  Google Scholar 

  35. Negri, A. J., Adler, R. F., Xu, L. & Surrat, J. The impact of Amazonian deforestation on dry season rainfall. J. Clim. 17, 1306–1319 (2004).

    Article  Google Scholar 

  36. Wang, J. et al. Impact of deforestation in the Amazon Basin on cloud climatology. Proc. Natl Acad. Sci. USA 106, 3670–3674 (2009).

    Article  Google Scholar 

  37. Butt, N., de Oliveira, P. A. & Costa, M. H. Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J. Geophys. Res. 116, D11120 (2011).

    Article  Google Scholar 

  38. Knox, R., Bisht, G. Wang, J. & Bras, R. Precipitation variability over the forest-to-nonforest transition in southwestern Amazonia. J. Clim. 24, 2368–2377 (2011).

    Article  Google Scholar 

  39. Latrubesse, E. M., Amsler, M., Morais, M. & Aquino, S. The geomorphic response of a large pristine alluvial river to tremendous deforestation in the South American tropics. J. Geomorphol. 113, 239–252 (2009).

    Article  Google Scholar 

  40. Sahin, V. & Hall. M. J. The effects of afforestation and deforestation on water yields. J. Hydrol. 178, 293–309 (1996).

    Article  Google Scholar 

  41. Bruijnzeel, L. A. Hydrological functions of tropical forests: not seeing the soil for the trees? Agric. Ecosyst. Envir. 104, 185–228 (2004).

    Article  Google Scholar 

  42. Hayhoe, S. J. et al. Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics. Glob. Change Biol. 17, 1821–1833 (2011).

    Article  Google Scholar 

  43. Coe, M. T., Latrubesse, E. M., Ferreira, M. E. & Amsler, M. L. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 105, 119–131 (2011).

    Article  Google Scholar 

  44. Bruijnzeel, L. A., Kappelle, M., Mulligan M. & Scatena, F. N. in Tropical Montane Cloud Forests (eds Bruijnzeel, L. A. Scatena, F. N. & Hamilton, L. S.) 691–740 (Cambridge Univ. Press, 2010).

    Google Scholar 

  45. Syvitski, J. & Milliman, J. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115, 1–19 (2007).

    Article  Google Scholar 

  46. Nichols, K., Bierman, P., Finkel, R. & Larsen, J. in The Rio Chagres, Panama: A Multidisciplinary Profile of a Tropical Watershed (ed. Harmon, R. S.) 297–313 (Springer, 2005).

    Book  Google Scholar 

  47. Chappell, N. A., Douglas, I., Hanapi, J. M. & Tych, W. Sources of suspended sediment within a tropical catchment recovering from selective logging. Hydrol. Processes 18, 685–701 (2004).

    Article  Google Scholar 

  48. Lele, S. Watershed services of tropical forests: from hydrology to economic valuation to integrated analysis. Curr. Opin. Environ. Sustain. 1, 148–155 (2009).

    Article  Google Scholar 

  49. Buytaert, W. et al. Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management. Hydrol. Earth System Sci. 14, 1247–1258 (2010).

    Article  Google Scholar 

  50. Werth, D. & Avissar, R. The local and global effects of Amazon deforestation. J. Geophys. Res. 107, 1–8 (2002).

    Article  Google Scholar 

  51. Douglas, E. M., Beltrán-Przekurat, A., Niyogi, D., Pielke, R. A., & Vörösmarty, C. J. The impact of agricultural intensification and irrigation on land–atmosphere interactions and Indian monsoon precipitation — a mesoscale modeling perspective. Glob. Planet. Change 67, 117–128 (2009).

    Article  Google Scholar 

  52. Tao, W-K. et al. The impact of microphysical schemes on hurricane intensity and track. Asia-Pacif. J. Atmos. Sci. 47, 1–16 (2011).

    Article  Google Scholar 

  53. Ramanathan, V. et al. Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption and radiative forcing. J. Geophys. Res. 112, D22S21 (2007).

    Article  Google Scholar 

  54. Lyon, S. W. et al. Coupling terrestrial and atmospheric water dynamics to improve prediction in a changing environment. Bull. Am. Meteorol. Soc. 89, 1275–1279 (2008).

    Article  Google Scholar 

  55. Kollet, S. J. & Maxwell, R. M. Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Wat. Resour. Res. 44, W02402 (2008).

    Article  Google Scholar 

  56. Stoy, P. C. et al. Biosphere–atmosphere exchange of CO2 in relation to climate: a cross-biome analysis across multiple time scales. Biogeosciences 6, 2297–2312 (2009).

    Article  CAS  Google Scholar 

  57. Espinoza Villar, J. C. et al. Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol. 29, 1574–1594 (2009).

    Article  Google Scholar 

  58. Marengo. J. A. et al. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim. Dynam. 35, 1073–1097 (2010).

    Article  Google Scholar 

  59. Giambelluca, T. W. et al. Stand structural controls on evapotranspiration in native and invaded tropical montane cloud forest in Hawai'i. Eos Trans. AGU 89 (Fall Meeting Suppl.), abstr. B43A–0422 (2008).

    Google Scholar 

  60. Roberts, J. M., Gash, J. H. C., Tani, M. & Bruijnzeel, L. A. in Forests, Water and People in the Humid Tropics (eds Bonell, M. & Bruijnzeel, L. A.) 287–313 (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  61. Giovannetonne, J. P. & Barros, A. P. Probing regional landform controls of cloudiness and precipitation in the central Andes using satellite data. J. Hydrometeorol. 10, 167–182 (2009).

    Article  Google Scholar 

  62. Giovannettone, J. P. & Barros, A. P. A remote sensing survey of the role of landform on the organization of orographic precipitation in central and southern Mexico. J. Hydrometeorol. 9, 1267–1283 (2008).

    Article  Google Scholar 

  63. Genereux, D. P., Webb, M. & Solomon, D. K. The chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rainforest: evidence from carbon, helium, and chlorine. Wat. Resour. Res. 45, W08413 (2009).

    Article  CAS  Google Scholar 

  64. Kurtz, A. C., Lugolobi, F. & Salvucci, G. Germanium-silicon as a flow path tracer: application to the Rio Icacos watershed. Wat. Resour. Res. 47, W06516 (2011).

    Article  Google Scholar 

  65. Taylor, P. G. & Townsend, A. R. Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature 464 1178–1181 (2010).

    Article  CAS  Google Scholar 

  66. Gupta, A. in The Hydrology–Geomorphology Interface: Rainfall, Floods, Sedimentation, Land Use (eds Hassan, M. A. Slaymaker, O. & Berkowicz, S. M.) 215–228 (Int. Assoc. Hydrol. Sci., 2000).

    Google Scholar 

  67. Cadol, D., Wohl, E. Goode, J. R. & Jaeger, K. L. Wood distribution in neotropical forested headwater streams of La Selva, Costa Rica. Earth Surface Proc. Landforms 34, 1198–1215 (2009).

    Article  Google Scholar 

  68. Buytaert, W., Célleri, R. & Timbe, L. Predicting climate change impacts on water resources in the tropical Andes: effects of GCM uncertainty. Geophys. Res. Lett. 36, 1–5 (2009).

    Article  Google Scholar 

  69. Grimm, A. M. & Tedeschi, R. G. ENSO and extreme rainfall events in South America. J. Clim. 22, 1589–1609 (2009).

    Article  Google Scholar 

  70. Avissar, R., Silva Dias, P. L., Silva Dias, M. A. F. & Nobre, C. The Large-Scale Biosphere–Atmosphere experiment in Amazonia (LBA): insights and future research needs. J. Geophys. Res. 107, 8086 (2002).

    Article  Google Scholar 

  71. Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).

    Article  Google Scholar 

  72. Held, A. A. & Rodriguez, E. in Forests, Water and People in the Humid Tropics. Past, Present and Future Hydrological Research for Integrated Land and Water Management (eds Bonell, M. & Bruijnzeel, L. A.) 675–702 (Cambridge Univ. Press, 2004).

    Google Scholar 

  73. Bastiaanssen, W. G. M. & Chandrapala, L. Water balance variability across Sri Lanka for assessing agricultural and environmental water use. Agr. Water Manage. 58, 171–192 (2003).

    Article  Google Scholar 

  74. Fuller, D. O. Tropical forest monitoring and remote sensing: a new era of transparency in forest governance? Singapore J. Tropical Geogr. 27, 15–29 (2006).

    Article  Google Scholar 

  75. De Jeu, R. et al. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surveys Geophys. 29, 399–420 (2008).

    Article  Google Scholar 

  76. Kerr, Y. Soil moisture from space: where are we? Hydrogeol. J. 15, 117–120 (2007).

    Article  CAS  Google Scholar 

  77. Winsemius, H. C., Savenije, H. H. G. & Bastiaanssen, W. G. M. Constraining model parameters on remotely sensed evaporation: justification for distribution in ungauged basins? Hydrol. Earth Syst. Sci. 12, 1403–1413 (2008).

    Article  Google Scholar 

  78. Fisher, J. B. et al. The land–atmosphere water flux in the tropics. Glob. Change Biol. 15, 2694–2714 (2009).

    Article  Google Scholar 

  79. Gui, S., Liang, S. & Li, L. Evaluation of satellite-estimated surface longwave radiation using ground-based observations. J. Geophys. Res. 115, D18214 (2010).

    Article  Google Scholar 

  80. Jacobs, J. M., Anderson, M. C., Friess, L. C. & Diak, G. R. Solar radiation, longwave radiation and emergent wetland evapotranspiration estimates from satellite data in Florida, USA. Hydrol. Sci. J. 49, 461–476 (2004).

    Article  Google Scholar 

  81. Winsemius, H. C., van de Giesen, N. C. & Friesen, J. Verification of LandSAF down-welling surface short-wave radiation flux (DSSF) over a savanna area in Burkina Faso, Africa. Geophys. Res. Abstr. 8, 05597 (2006).

    Google Scholar 

  82. Behrangi, A. et al. Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol. 397, 225–237 (2011).

    Article  Google Scholar 

  83. Nijssen, B. & Lettenmaier, D. P. Effect of precipitation sampling error on simulated hydrological fluxes and states: anticipating the global precipitation measurement satellites. J. Geophys. Res. 109, D02103 (2004).

    Article  Google Scholar 

  84. Sorooshian, S. et al. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 81, 2035–2046 (2000).

    Article  Google Scholar 

  85. Su, F., Hong, Y. & Lettenmaier, D. P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J. Hydrometeorol. 9, 622–640 (2008).

    Article  Google Scholar 

  86. Rahman, S. H., Sengupta, D. & Ravichandran, M. Variability of Indian summer monsoon rainfall in daily data from gauge and satellite. J. Geophys. Res. 114, D17113 (2009).

    Article  Google Scholar 

  87. Shen, Y., Xiong, A., Wang, Y. & Xie, P. Performance of high-resolution satellite precipitation products over China. J. Geophys. Res. 115, D02114 (2010).

    Article  Google Scholar 

  88. Tang, L. & Hossain, F. Transfer of satellite rainfall error from gaged to ungaged locations: how realistic will it be for the Global Precipitation Mission? Geophys. Res. Lett. 36, L10405 (2009).

    Article  Google Scholar 

  89. Tian, Y. et al. Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res. 114, D24101 (2009).

    Article  Google Scholar 

  90. Asner, G. P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sensing 22, 3855–3862 (2001).

    Article  Google Scholar 

  91. Demaria, E. M. C. et al. Evaluation of mesoscale convective systems in South America using multiple satellite products and an object-based approach. J. Geophys. Res. 116, D08103 (2011).

    Article  Google Scholar 

  92. Compaoré, H. et al. Evaporation mapping at two scales using optical imagery in the White Volta Basin, Upper East Ghana. Phys. Chem. Earth Parts A/B/C 33, 127–140 (2008).

    Article  Google Scholar 

  93. Alsdorf, D., Bates, P., Melack, J., Wilson, M. & Dunne, T. Spatial and temporal complexity of the Amazon flood measured from space. Geophys. Res. Lett. 34, L08402 (2007).

    Article  Google Scholar 

  94. Rosenqvist, Ã. & Birkett, C. M. Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo river basin. Int. J. Remote Sensing 23, 1283–1302 (2002).

    Article  Google Scholar 

  95. Herschy, R.W. in Encyclopedia of Hydrology and Water Resources (eds Herschy, R.W. and Fairbridge, R.W.) 571–584 (Kluwer, 1998).

    Book  Google Scholar 

  96. Stallard, R. F. et al. Panama Canal watershed experiment: Agua Salud Project. Wat. Resour. Impact 12, 17–20 (2010).

    Google Scholar 

  97. Allen, R. G. et al. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Processes 25, 4011–4027 (2011).

    Article  Google Scholar 

  98. Hassler, S. K., Zimmermann, B., van Breugel, M., Hall, J. S. & Elsenbeer, H. Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. Forest Ecol. Manage. 261, 1634–1642 (2011).

    Article  Google Scholar 

  99. Bastiaanssen, W. G. M. et al. A remote sensing surface energy balance algorithm for land (SEBAL): Part 1. Formulation. J. Hydrol. 212–213, 198–212 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

Funding for the March 2011 tropical hydrology workshop that formed the starting point for this paper was provided by the US Army Research Office. We thank H. Rogers for hosting the workshop, and J. DeLay, C. Downer, H. Elsenbeer, E. McDonald and S. Turnbull for discussions during the workshop.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing the synthesis offered in this Review. Individual subtopics covered by each author are: E.W., lead author and fluvial geomorphology and Fig. 2; A.B. and N.B., atmospheric processes; N.B., Fig. 5; N.A.C., J.M. and F.O., hillslope hydrology; M.C., stream hydrology and Fig. 4; T.G. and J.J., land–atmosphere interactions; S.G. and R.H., biogeochemistry; S.G., Fig. 1; J.M.H.H., soil hydrology and remote sensing and Fig. 3.

Corresponding author

Correspondence to Ellen Wohl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wohl, E., Barros, A., Brunsell, N. et al. The hydrology of the humid tropics. Nature Clim Change 2, 655–662 (2012). https://doi.org/10.1038/nclimate1556

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing