Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The need for new ocean conservation strategies in a high-carbon dioxide world

Abstract

The historically unprecedented threats to the marine environment posed by increasing atmospheric carbon dioxide will probably require the use of unconventional, non-passive methods to conserve marine ecosystems. Soliciting such approaches and evaluating their cost, safety and effectiveness must be part of a robust ocean conservation and management plan going forward.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Depiction of threats and outcomes facing marine biota and the possible effects of intervention and management, emphasizing both the conventional and unconventional nature of the stressors and hence the need to consider unconventional management practices.

References

  1. 1

    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  2. 2

    Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

    Article  CAS  Google Scholar 

  3. 3

    Feely, R. A., Doney, S. C. & Cooley, S. R. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47 (2009).

    Article  Google Scholar 

  4. 4

    Jackson, J. B. C. The future of the oceans past. Phil. Trans. R. Soc. Lond. B 365, 3765–3768 (2010).

    Article  Google Scholar 

  5. 5

    Belkin, I. M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 81, 207–213 (2009).

    Article  Google Scholar 

  6. 6

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Hoegh-Guldberg, O. & Bruno, J. The impact of climate change on the world's marine ecosystems. Science 328, 1523–1528 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Hoegh-Guldberg, O. Coral bleaching, climate change and the future of the world's coral reefs. Mar. Freshwat. Res. 50, 839–866 (1999).

    Article  Google Scholar 

  9. 9

    Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).

    Article  Google Scholar 

  10. 10

    Kleypas, J. A. et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284, 118–120 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Kleypas, J. A. et al. Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research (NSF, NOAA and USGS, 2006).

    Google Scholar 

  12. 12

    Marubini, F., Ferrier-Pagès, C., Furla, P. & Allemand, D. Coral calcification responds to seawater acidification: A working hypothesis towards a physiological mechanism. Coral Reefs 27, 491–499 (2008).

    Article  Google Scholar 

  13. 13

    Kuffner, I. B. et al. Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geosci. 1, 114–117 (2007).

    Article  CAS  Google Scholar 

  14. 14

    Hendriks, I. E., Duarte, C. M. & Alvarez, M. Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. Estuar. Coast. Shelf Sci. 86, 157–164 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Doney, S. C. et al. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).

    Article  Google Scholar 

  16. 16

    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).

    Article  Google Scholar 

  17. 17

    Cooley, S. R. & Doney, S. C. Anticipating ocean acidification's economic consequences for commercial fisheries. Environ. Res. Lett. 4, 024007 (2009).

    Article  CAS  Google Scholar 

  18. 18

    Noone, K., Sumaila, R. & Díaz, R. J. Valuing the Ocean (Stockholm Environment Institute, 2012).

    Google Scholar 

  19. 19

    Burke, L. et al. Reefs at Risk Revisited (World Resources Institute, 2011).

    Google Scholar 

  20. 20

    Antarctic Climate and Ecosystems Cooperative Research Centre Position Analysis: CO2 and Climate Change: Ocean Impacts and Adaptation Issues (Antarctic Climate and Ecosystems Cooperative Research Centre, 2008); available at http://go.nature.com/GA2EyX

  21. 21

    European Geosciences Union EGU Position Statement on Ocean Acidification (European Geosciences Union, 2011); available at http://go.nature.com/BtJ64D

  22. 22

    Rogers, A. D. & Laffoley, D. d'A . International Earth System Expert Workshop on Ocean Stresses and Impacts. Summary Report (International Programme on the State of the Ocean, 2011); available at http://go.nature.com/pLRocg

    Google Scholar 

  23. 23

    National Research Council Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean (National Academies Press, 2010); available via http://go.nature.com/b9m2r8

  24. 24

    National Ocean Council Final Recommendations of the Interagency Ocean Policy Task Force (White House Council on Environmental Quality, Executive Office of the President of the United States, 2010).

  25. 25

    Laffoley, D. d'A. & Baxter, J. M. (eds) Ocean Acidification: Acting on Evidence. Messages for Rio+20 (European Project on Ocean Acidification, UK Ocean Acidification Research Programme, Biological Impacts of Ocean Acidification and Mediterranean Sea Acidification in a Changing Climate, 2011).

    Google Scholar 

  26. 26

    Raven, J. A. et al. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide (Royal Society, 2005).

    Google Scholar 

  27. 27

    Stern, N. The Economics of Climate Change: The Stern Review (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  28. 28

    Boyd, P. W. Ranking geo-engineering schemes. Nature Geosci. 1, 722–724 (2008).

    CAS  Article  Google Scholar 

  29. 29

    National Research Council Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean (National Academies Press, 2010).

  30. 30

    Keeling, R. F. et al. in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, 2011).

    Google Scholar 

  31. 31

    Peters, G. P. et al. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nature Clim. Change 2, 2–4 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Lyman, J. M. et al. Robust warming of the global upper ocean. Nature 465, 334–337 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Den Elzen, M. G. J., Hof, A. F. & Roelfsema, M. The emissions gap between the Copenhagen pledges and the 2 °C climate goal: Options for closing and risks that could widen the gap. Glob. Environ. Change 21, 733–743 (2011).

    Article  Google Scholar 

  34. 34

    Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Ann. Rev. Earth Planet. Sci. 37, 117–134 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

    CAS  Article  Google Scholar 

  36. 36

    Maynard, J., Baird, A. & Pratchett, M. Revisiting the Cassandra syndrome; the changing climate of coral reef research. Coral Reefs 27, 745–749 (2008).

    Article  Google Scholar 

  37. 37

    Pandolfi, J. M. et al. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).

    CAS  Article  Google Scholar 

  38. 38

    Pelejero, C., Calvo, E. & Hoegh-Guldberg, O. Paleo-perspectives on ocean acidification. Trends Ecol. Evol. 25, 332–344 (2010).

    Article  Google Scholar 

  39. 39

    Kump, L. R., Bralower, T. J. & Ridgwell, A. Ocean acidification in deep time. Oceanography 22, 94–107 (2009).

    Article  Google Scholar 

  40. 40

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS  Article  Google Scholar 

  41. 41

    De'ath, G., Lough, J. M. & Fabricius, K. E. Declining coral calcification on the Great Barrier Reef. Science 323, 16–119 (2009).

    Article  CAS  Google Scholar 

  42. 42

    Côté, I. M . & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).

    Article  CAS  Google Scholar 

  43. 43

    Greenstein, B. J. & Pandolfi, J. M. Escaping the heat: Range shifts of reef coral taxa in coastal Western Australia. Glob. Change Biol. 14, 513–528 (2008).

    Article  Google Scholar 

  44. 44

    Yamano, H. K., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601 (2011).

    Article  Google Scholar 

  45. 45

    Riegl, B. M. & Purkis, S. Methods to preserve coral reef futures (online comment regarding ref. 37). Science available at http://www.sciencemag.org/content/333/6041/418/reply#sci_el_15719 (2011).

  46. 46

    Graham, N. A. J. et al. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems. PLoS ONE 3, e3039 (2008).

    Article  CAS  Google Scholar 

  47. 47

    Darling, E. S., McClanahan, T. R. & Côté, I. M. Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conserv. Lett. 3, 122–130 (2010).

    Article  Google Scholar 

  48. 48

    Selig, E. R. & Bruno, J. F. A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS ONE 5, e9278 (2010).

    Article  CAS  Google Scholar 

  49. 49

    Csaszar, N. B. M. et al. Estimating the potential for adaptation of corals to climate warming. PLoS ONE 5, e9751 (2010).

    Article  CAS  Google Scholar 

  50. 50

    Mora, C. & Sale, P. F. Ongoing global biodiversity loss and the need to move beyond protected areas: A review of the technical and practical shortcomings of protected areas on land and sea. Marine Ecology Progress Series 434, 251–266 (2011).

    Article  Google Scholar 

  51. 51

    Selig, E. R., Casey, K. S. & Bruno, J. F. Temperature-driven coral decline: the role of marine protected areas. Glob. Change Biol. 18, 1561–1570 (2012).

    Article  Google Scholar 

  52. 52

    Jones, R. J., Hoegh-Guldberg, O., Larkum, A. W. D. & Schreiber, U. Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ. 21, 1219–1230 (1998).

    CAS  Article  Google Scholar 

  53. 53

    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world's coral reefs. Mar. Freshwat. Res. 50, 839–866 (1999).

    Article  Google Scholar 

  54. 54

    Sabater, M. G. & Yap, H. T. Growth and survival of coral transplants with and without electrochemical deposition of CaCO3 . J. Exp. Mar. Biol. Ecol. 272, 131–146 (2002).

    CAS  Article  Google Scholar 

  55. 55

    Goreau, T. J., Cervino, J. M. & Pollina, R. Increased zooxanthellae numbers and mitotic index in electrically stimulated corals. Symbiosis 37, 107–120 (2004).

    Google Scholar 

  56. 56

    Sabater, M. G. & Yap, H. T. Long-term effects of induced mineral accretion on growth, survival and corallite properties of Porites cylindrica Dana. J. Exp. Mar. Biol. Ecol. 311, 355–374 (2004).

    Article  Google Scholar 

  57. 57

    Kirke, B. Enhancing fish stocks with wave-powered artificial upwelling. Ocean Coast. Manage. 46, 901–915 (2003).

    Article  Google Scholar 

  58. 58

    Hollier, W. et al. Reef climate adaptation research and technology. Int. J. Clim. Change 2, 127–142 (2011).

    Google Scholar 

  59. 59

    Vaughan, N. E. & Lenton, T. M. A review of climate geoengineering proposals. Climatic Change 109, 745–790 (2011).

    Article  Google Scholar 

  60. 60

    Marshall, P. A. & Baird, A. H. Bleaching of corals on the Great Barrier Reef: Differential susceptibilities among taxa. Coral Reefs 19, 155–163 (2000).

    Article  Google Scholar 

  61. 61

    Rowan, R. Thermal adaptation in reef coral symbionts. Nature 430, 742–742 (2004).

    CAS  Article  Google Scholar 

  62. 62

    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: A 'nugget of hope' for coral reefs in an era of climate change. Proc. R. Soc. B 273, 2305–2312 (2006).

    Article  Google Scholar 

  63. 63

    Rinkevich, B. Conservation of coral reefs through active restoration measures: Recent approaches and last decade progress. Environ. Sci. Technol. 39, 4333–4342 (2005).

    CAS  Article  Google Scholar 

  64. 64

    McClanahan, T. R. et al. Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol. Monogr. 77, 503–525 (2007).

    Article  Google Scholar 

  65. 65

    Brown, B. E., Dunne, R. P., Goodson, M. S. & Douglas, A. E. Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21, 119–126 (2002).

    Google Scholar 

  66. 66

    Ulstrup, K. E., Ralph, P. J., Larkum, A. W. D. & Kühl, M. Intra-colonial variability in light acclimation of zooxanthellae in coral tissues of Pocillopora damicornis. Mar. Biol. 149, 1325–1335 (2006).

    Article  Google Scholar 

  67. 67

    Parker, L. M., Ross, P. M. & O'Connor, W. A. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar. Biol. 158, 689–697 (2011).

    Article  Google Scholar 

  68. 68

    Harvey, L. D. D. Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. J. Geophys. Res. 113, C04028 (2008).

    Google Scholar 

  69. 69

    Schuiling, R. D. & Krijgsman, P. Enhanced weathering: An effective and cheap tool to sequester CO2 . Climatic Change 74, 349–354 (2006).

    CAS  Article  Google Scholar 

  70. 70

    Kohler, P., Hartmann, J. & Wolf-Gladrow, D. A. Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc. Natl Acad. Sci. USA 107, 20228–20233 (2010).

    CAS  Article  Google Scholar 

  71. 71

    Langdon, C. et al. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob. Biogeochem. Cycles 14, 639–654 (2000).

    CAS  Article  Google Scholar 

  72. 72

    Cohen, A. L. & Holcomb, M. Why corals care about ocean acidification: Uncovering the mechanism. Oceanography 22, 118–127 (2009).

    Article  Google Scholar 

  73. 73

    Rau, G. H., Knauss, K. G., Langer, W. H. & Caldeira, K. Reducing energy-related CO2 emissions using accelerated weathering of limestone. Energy 32, 1471–1477 (2007).

    CAS  Article  Google Scholar 

  74. 74

    Rau, G. H. CO2 mitigation via capture and chemical conversion in seawater. Environ. Sci. Technol. 45, 1088–1092 (2011).

    CAS  Article  Google Scholar 

  75. 75

    Kheshgi, H. S. Sequestering atmospheric carbon-dioxide by increasing ocean alkalinity. Energy 20, 915–922 (1995).

    CAS  Article  Google Scholar 

  76. 76

    Nikulshina, V., Hirscha, D., Mazzottia, M. & Steinfeld, A. CO2 capture from air and co-production of H2 via the Ca(OH)2–CaCO3 cycle using concentrated solar power — Thermodynamic analysis. Energy 31, 1379–1389 (2006).

    Article  CAS  Google Scholar 

  77. 77

    House, K. Z., House, C. H., Schrag, D. P & Aziz, M. J. Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change. Environ. Sci. Technol. 41, 8464–8470 (2007).

    CAS  Article  Google Scholar 

  78. 78

    Rau, G. H. Electrochemical splitting of calcium carbonate to increase solution alkalinity: Implications for mitigation of carbon dioxide and ocean acidity. Environ. Sci. Technol. 42, 8935–8940 (2008).

    CAS  Article  Google Scholar 

  79. 79

    Lampitt, R. S. et al. Ocean fertilization: A potential means of geoengineering? Phil. Trans. R. Soc. A 366, 3919–3945 (2008).

    CAS  Article  Google Scholar 

  80. 80

    Chung, I. K. et al. Using marine macroalgae for carbon sequestration: a critical appraisal. J. Appl. Phycol. 23, 877–886 (2011).

    CAS  Article  Google Scholar 

  81. 81

    Jiao, N. Z. et al. The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool. Nature Rev. Microbiol. 9, 555 (2011).

    CAS  Article  Google Scholar 

  82. 82

    Lam, P. J. et al. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic. Glob. Biogeochem. Cycles 25, GB3009 (2011).

    Article  CAS  Google Scholar 

  83. 83

    Metzger, R. A. & Benford, G. Sequestering of atmospheric carbon through permanent disposal of crop residue. Climatic Change 49, 11–19 (2001).

    CAS  Article  Google Scholar 

  84. 84

    Strand, S. E. & Benford, G. Ocean sequestration of crop residue carbon: Recycling fossil fuel carbon back to deep sediments. Environ. Sci. Technol. 43, 1000–1007 (2009).

    CAS  Article  Google Scholar 

  85. 85

    Keil, R. G., Nuwer, J. M. & Strand, S. E. Burial of agricultural byproducts in the deep sea as a form of carbon sequestration: A preliminary experiment. Mar. Chem. 122, 91–95 (2010).

    CAS  Article  Google Scholar 

  86. 86

    International Union for Conservation of Nature Reversing Climate Change: Is Marine Geo-Engineering A Solution? (IUCN, World Conservation Congress, 2008).

  87. 87

    Victor, D. G. et al. The geoengineering option. Foreign Aff. 88, 64–76 (2009).

    Google Scholar 

  88. 88

    Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–436 (2008).

    CAS  Article  Google Scholar 

  89. 89

    Hobbs, R. J. & Harris, J. A. Restoration ecology: Repairing the earth's ecosystems in the new millennium. Restor. Ecol. 9, 239–246 (2001).

    Article  Google Scholar 

  90. 90

    Elliott, M., Burdon, D., Hemingway, K. L. & Apitz, S. E. Estuarine, coastal and marine ecosystem restoration: Confusing management and science — a revision of concepts. Estuar. Coast. Shelf Sci. 74, 349–366 (2007).

    Article  Google Scholar 

  91. 91

    United Nations Report of the United Nations Conference on Environment and Development Vol. I (United Nations, 1992).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Greg H. Rau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 374 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rau, G., McLeod, E. & Hoegh-Guldberg, O. The need for new ocean conservation strategies in a high-carbon dioxide world. Nature Clim Change 2, 720–724 (2012). https://doi.org/10.1038/nclimate1555

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing