Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mediterranean seagrass vulnerable to regional climate warming


The Mediterranean Sea, one of the regions warming fastest under climate change1,2, harbours lush seagrass (Posidonia oceanica) meadows that form the basis for a key ecosystem in the region3. Recent field results have shown that increased maximum annual seawater temperature in the Mediterranean has already led to increased seagrass mortality4. Here we project the trajectory of P. oceanica meadows under the warming expected in the western Mediterranean through the twenty-first century to conclude that warming will lead to the functional extinction of P. oceanica meadows by the middle of this century (year 2049±10) even under a relatively mild greenhouse-gas emissions scenario. Efforts to alleviate local stresses adding to the loss of P. oceanica meadows will have a limited effect in conserving the meadows under climate change. Efforts to mitigate climate change are urgently needed to preserve this key ecosystem.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Annual SSTmax in the Balearic Islands region projected for the twenty-first century.
Figure 2: Percentage of P. oceanica shoot density in the twenty-first century.


  1. Bindoff, N. L et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

    Google Scholar 

  2. Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS  Article  Google Scholar 

  3. Larkum, A. W. D., Orth, J. J. & Duarte, C. M. Seagrasses: Biology, Ecology and Their Conservation (Kluwer Academic Publishers, 2006).

    Google Scholar 

  4. Marbà, N. & Duarte, C. M. Mediterranean Warming Triggers Seagrass (Posidonia oceanica) Shoot Mortality. Glob. Change Biol. 16, 2366–2375 (2010).

    Article  Google Scholar 

  5. Bethoux, J. P. & Copin-Montégut, G. Biological fixation of atmospheric nitrogen in the Mediterranean Sea. Limnol. Oceanogr 31, 1353–1358 (1986).

    CAS  Article  Google Scholar 

  6. Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge Univ.Press, 2000).

    Book  Google Scholar 

  7. Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    CAS  Article  Google Scholar 

  8. Marbà, N. et al. Assessing the effectiveness of protection on Posidonia oceanica populations in the Cabrera National Park (Spain). Environ. Conserv. 29, 509–518 (2002).

    Article  Google Scholar 

  9. Arnaud-Haond, S. et al. Implication of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica. PLoS ONE 7, e30454 (2012).

    CAS  Article  Google Scholar 

  10. Marbà, N. & Duarte, C. M. Rhizome elongation and seagrass clonal growth. Mar. Ecol. Prog. Ser. 174, 269–280 (1998).

    Article  Google Scholar 

  11. Marbà, N. et al. Direct evidence of imbalanced seagrass (Posidonia oceanica) shoot population dynamics along the Spanish Mediterranean. Estuaries 28, 53–62 (2005).

    Article  Google Scholar 

  12. Boudouresque, C. F., Bernard, G., Pergent, G., Shili, A. & Verlaque, M. Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: A critical review. Bot. Mar. 52, 395–418 (2009).

    Article  Google Scholar 

  13. IPCC Special Report on Emissions Scenarios (eds Nakicenovic, N. & Swart, R.) (Cambridge Univ. Press, 2000).

  14. Koch, M. S., Schopmeyer, S., Kyhn-Hansen, C. & Madden, C. J. Synergistic effects of high temperature and sulfide on tropical seagrass. J. Exp. Mar. Biol. Ecol. 341, 91–101 (2007).

    CAS  Article  Google Scholar 

  15. Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).

    CAS  Article  Google Scholar 

  16. Duarte, C. M. The future of seagrass meadows. Environ. Conserv. 29, 192–206 (2002).

    Article  Google Scholar 

  17. Hall-Spencer, J. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).

    CAS  Article  Google Scholar 

  18. Hendriks, I. E., Duarte, C. M. & Álvarez, M. Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. Est. Coast. Shelf Sci. 86, 157–164 (2010).

    CAS  Article  Google Scholar 

  19. Invers, O., Zimmerman, R., Alberte, R., Perez, M. & Romero, J. Inorganic carbon sources for seagrass photosynthesis: An experimental evaluation for bicarbonate use in temperate species. J. Exp. Mar. Biol. Ecol. 265, 203–217 (2001).

    CAS  Article  Google Scholar 

  20. Tomasello, A. et al. Seagrass meadows at the extreme of environmental tolerance: The case of Posidonia oceanica in a semi-enclosed coastal lagoon. Mar. Ecol. 30, 288–300 (2009).

    Article  Google Scholar 

  21. Vizzini, S. et al. Effect of explosive shallow hydrothermal vents on δ13 C and growth performance in the seagrass Posidonia oceanica. J. Ecol. 98, 1284–1291 (2010).

    Article  Google Scholar 

  22. Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    CAS  Article  Google Scholar 

  23. Conway, T. & Tans, P. Recent Global Monthly Mean CO2 (NOAA/ESRL, 2011); available at

  24. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS  Article  Google Scholar 

  25. Diaz-Almela, E. et al. Patterns in seagrass (Posidonia oceanica) flowering in the Western Mediterranean. Mar. Biol. 148, 723–742 (2006).

    Article  Google Scholar 

  26. Aires, T. et al. Evolutionary history of the seagrass genus Posidonia. Mar. Ecol. Progr. Ser. 421, 117–130 (2011).

    Article  Google Scholar 

  27. Raitsos, D. E. et al. Global climate change amplifies the entry of tropical species into the Eastern Mediterranean Sea. Limnol. Oceanogr 55, 1478–1484 (2010).

    Article  Google Scholar 

  28. Williams, S. L. Introduced species in seagrass ecosystems: Status and concerns. J. Exp. Mar. Biol. Ecol. 350, 89–110 (2007).

    Article  Google Scholar 

Download references


This study was financially supported by project SESAME of the 7th Framework Programme of the EU (contract number 036949), projects VANIMEDAT-2 and MEDEICG of the Spanish Marine Science and Technology Program (CTM2009-10163-C02-01 and CTM2009-07013, respectively), the ESCENARIOS project (funded by the Agencia Estatal de Meteorologı´a) and the E-Plan of the Spanish Government. G.J. was supported by a ‘JAE-DOC’ contract from the Spanish Research Council (CSIC).

Author information

Authors and Affiliations



G.J., N.M. and C.M.D. conceived and designed the study, discussed the results and wrote the manuscript and Supplementary Information. G.J. wrote the code, ran the model and analysed output data.

Corresponding author

Correspondence to Núria Marbà.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jordà, G., Marbà, N. & Duarte, C. Mediterranean seagrass vulnerable to regional climate warming. Nature Clim Change 2, 821–824 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing