Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stratospheric aerosol particles and solar-radiation management

Abstract

The deliberate injection of particles into the stratosphere has been suggested as a possible geoengineering scheme to mitigate the global warming aspect of climate change. Injected particles scatter solar radiation back to space and thus reduce the radiative balance of Earth. Previous studies investigating this scheme have focused primarily on sulphuric acid particles to mimic volcanic injections of stratospheric aerosol. However, the composition and size of volcanic sulphuric acid particles are far from optimal for scattering solar radiation. We show that aerosols with other compositions, such as minerals, could be used to dramatically increase the amount of light scatter achieved on a per mass basis, thereby reducing the particle mass required for injection. The chemical consequences of injecting such particles into the stratosphere are discussed with regard to the fate of the ozone layer. Research questions are identified with which to assess the feasibility of such geoengineering schemes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The stratospheric injection of particles will perturb the atmospheric radiative budget and the chemistry of the atmosphere.
Figure 2: Change in Bond albedo from a 1-km-thick stratospheric layer of aerosol whose size distribution is log-normal and whose volume fraction is held constant (equivalent to one 1-μm-radius droplet per cm3 of air).
Figure 3: Temperature and humidity conditions relevant for stratospheric particle chemistry in SRM schemes.

References

  1. 1

    Shepherd, J. Geoengineering the Climate: Science, Governance and Uncertainty (The Royal Society, 2009).

    Google Scholar 

  2. 2

    Keith, D. W. Geoengineering. Nature 409, 420–420 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Eatough, D. J., Caka, F. M. & Farber, R. J. The conversion of SO2 to sulfate in the atmosphere. Isr. J. Chem. 34, 301–314 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Solomon, S. et al. The persistently variable 'background' stratospheric aerosol layer and global climate change. Science 333, 866–870 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Murphy, D. M., Thomson, D. S. & Mahoney, M. J. In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers. Science 282, 1664–1669 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Hansen, J., Lacis, A., Ruedy, R. & Sato, M. Potential climate impact of Mount Pinatubo eruption. Geophys. Res. Lett. 19, 215–218 (1992).

    Article  Google Scholar 

  7. 7

    Soden, B. J., Wetherald, R. T., Stenchikov, G. L. & Robock, A. Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science 296, 727–730 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Minnis, P. et al. Radiative climate forcing by the Mount Pinatubo eruption. Science 259, 1411–1415 (1993).

    CAS  Article  Google Scholar 

  9. 9

    McCormick, M. P., Thomason, L. W. & Trepte, C. R. Atmospheric effects of the Mt Pinatubo eruption. Nature 373, 399–404 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Crutzen, P. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change 77, 211–220 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Rasch, P. J. et al. An overview of geoengineering of climate using stratospheric sulphate aerosols. Phil. Trans. R. Soc. A 366, 4007–4037 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Rasch, P. J., Crutzen, P. J. & Coleman, D. B. Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size. Geophys. Res. Lett. 35, L02809 (2008).

    Article  Google Scholar 

  13. 13

    Blackstock, J. J. et al. Climate Engineering Responses to Climate Emergencies (Novim, 2009); available at http://arxiv.org/pdf/0907.5140.

    Google Scholar 

  14. 14

    Katz, J. I. Stratospheric albedo modification. Energ. Environ. Sci. 3, 1634–1644 (2010).

    Article  Google Scholar 

  15. 15

    Davidson, P., Hunt, H. E. M. & Burgoyne, C. J. Atmospheric delivery system. UK patent application GB2476518 (2009).

  16. 16

    Keith, D. W. Photophoretic levitation of engineered aerosols for geoengineering. Proc. Natl Acad. Sci. USA 107, 16428–16431 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Ferraro, A. J., Highwood, E. J. & Charlton-Perez, A. J. Stratospheric heating by potential geoengineering aerosols. Geophys. Res. Lett. 38, L24706 (2011).

    Article  Google Scholar 

  18. 18

    Andrews, D. G., Leovy, C. B. & Holton, J. R. Middle Atmosphere Dynamics (Academic, 1987).

    Google Scholar 

  19. 19

    Niemeier, U., Schmidt, H. & Timmreck, C. The dependency of geoengineered sulfate aerosol on the emission strategy. Atmos. Sci. Lett. 12, 189–194 (2011).

    Article  Google Scholar 

  20. 20

    Davidson, P., Burgoyne, C., Hunt, H., Loew, D. & Causier, M. Lifting options for stratospheric aerosols: Enabling geoengineering by solar radiation management. Proc. R. Soc. A http://dx.doi.org/10.1098/rsta.2011.0639 (in the press).

  21. 21

    McClellan, J., Sisco, J., Suarez, B. & Keogh, G. Geoengineering Cost Analysis (Aurora Flight Sciences Corporation, 2010).

    Google Scholar 

  22. 22

    Robock, A., Marquardt, A., Kravitz, B. & Stenchikov, G. Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 36, L19703 (2009).

    Article  Google Scholar 

  23. 23

    World Meteorological Organization — Global Ozone Research and Monitoring Project, Report No. 52 Scientific Assessment of Ozone Depletion: 2010 (2011).

  24. 24

    Parker, S. P. McGraw-Hill Concise Encylopaedia of Science and Technology (McGraw-Hill, 1982).

    Google Scholar 

  25. 25

    Pallé, E. et al. Earthshine and the Earth's albedo: 2. Observations and simulations over 3 years. J. Geophys. Res. 108, 4710 (2003).

    Article  Google Scholar 

  26. 26

    Molina, M. J., Molina, L. T. & Kolb, C. E. Gas-phase and heterogeneous chemical kinetics of the troposphere and stratosphere. Annu. Rev. Phys. Chem. 47, 327–367 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 37, 275–316 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Solomon, S. et al. The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res. 101, 6713–6727 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Rinsland, C. P. et al. Heterogeneous conversion of N2O5 to HNO3 in the post-Mount Pinatubo eruption stratosphere. J. Geophys. Res. 99, 8213–8219 (1994).

    CAS  Article  Google Scholar 

  30. 30

    Sander, S. P. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies (Jet Propulsion Laboratory, 2011).

    Google Scholar 

  31. 31

    Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T. & Worsnop, D. R. Update 1 of: Mass accommodation and chemical reactions at gas−liquid interfaces. Chem. Rev. 111, PR76–PR109 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Kolb, C. E. et al. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos. Chem. Phys. Discuss. 10, 11139–11250 (2010).

    Article  Google Scholar 

  33. 33

    Crowley, J. N. et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V — heterogeneous reactions on solid substrates. Atmos. Chem. Phys. 10, 9059–9223 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Heckendorn, P. et al. The impact of geoengineering aerosols on stratospheric temperature and ozone. Environ. Res. Lett. 4, 045108 (2009).

    Article  Google Scholar 

  35. 35

    Russell, P. B. et al. Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses. J. Geophys. Res. 101, 18745–18763 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Grainger, R. G., Lambert, A., Rodgers, C. D., Taylor, F. W. & Deshler, T. Stratospheric aerosol effective radius, surface area and volume estimated from infrared measurements. J. Geophys. Res. 100, 16507–16518 (1995).

    CAS  Article  Google Scholar 

  37. 37

    Russell, P. B. et al. Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to LiDAR data. J. Geophys. Res. 98, 22969–22985 (1993).

    Article  Google Scholar 

  38. 38

    Deshler, T., Liley, J. B., Bodeker, G., Matthews, W. A. & Hoffmann, D. J. Stratospheric aerosol following Pinatubo, comparison of the north and south mid latitudes using in situ measurements. Adv. Space Res. 20, 2089–2095 (1997).

    Article  Google Scholar 

  39. 39

    Grainger, R. G. Infrared absorption by volcanic stratospheric aerosols observed by ISAMS. Geophys. Res. Lett. 20, 1283–1286 (1993).

    Article  Google Scholar 

  40. 40

    Lambert, A. et al. Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS. Geophys. Res. Lett. 20, 1287–1290 (1993).

    Article  Google Scholar 

  41. 41

    Guo, S., Bluth, G. J. S., Rose, W. I., Watson, I. M. & Prata, A. J. Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors. Geochem. Geophys. Geosyst. 5, Q04001 (2004).

    Google Scholar 

  42. 42

    Fischer, A. M. et al. Interannual-to-decadal variability of the stratosphere during the 20th century: Ensemble simulations with a chemistry-climate model. Atmos. Chem. Phys. 8, 7755–7777 (2008).

    CAS  Article  Google Scholar 

  43. 43

    Telford, P., Braesicke, P., Morgenstern, O. & Pyle, J. Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM. Atmos. Chem. Phys. 9, 4251–4260 (2009).

    CAS  Article  Google Scholar 

  44. 44

    Hanson, D. R. & Ravishankara, A. R. Reactive uptake of ClONO2 onto sulfuric acid due to reaction with HCl and H2O. J. Phys. Chem. 98, 5728–5735 (1994).

    CAS  Article  Google Scholar 

  45. 45

    Molina, M. J., Molina, L. T., Zhang, R., Meads, R. F. & Spencer, D. D. The reaction of ClONO2 with HCl on aluminum oxide. Geophys. Res. Lett. 24, 1619–1622 (1997).

    CAS  Article  Google Scholar 

  46. 46

    World Meteorological Organization — Global Ozone Research and Monitoring Project, Report No. 44 Scientific Assessment of Ozone Depletion: 1998 (1999).

  47. 47

    Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

    CAS  Article  Google Scholar 

  48. 48

    Robock, A., Bunzl, M., Kravitz, B. & Stenchikov, G. L. A Test for Geoengineering? Science 327, 530–531 (2010).

    CAS  Article  Google Scholar 

  49. 49

    Stern, N. The Economics of Climate Change: The Stern Review (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  50. 50

    Liou, K-N. An Introduction to Atmospheric Radiation (Academic, 1980).

    Google Scholar 

  51. 51

    Van de Hulst, H. C. Light Scattering by Small Particles (Wiley, 1957).

    Book  Google Scholar 

  52. 52

    Boucher, O. On aerosol direct shortwave forcing and the Henyey–Greenstein phase function. J. Atmos. Sci. 55, 128–134 (1998).

    Article  Google Scholar 

  53. 53

    Fussen, D., Vanhellemont, F. & Bingen, C. Evolution of stratospheric aerosols in the post-Pinatubo period measured by solar occultation. Atmos. Environ. 35, 5067–5078 (2001).

    CAS  Article  Google Scholar 

  54. 54

    Hitchman, M. H., McKay, M. & Trepte, C. R. A climatology of stratospheric aerosol. J. Geophys. Res. 99, 20689–20700 (1994).

    Article  Google Scholar 

  55. 55

    Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The project and the authors F.D.P., P.B., R.G.G., M.K., I.M.W. and R.A.C. were funded by EPSRC grant number EP/I01473X/1. P.J.D. was funded by Davidson Technology Limited.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to F. D. Pope or R. G. Grainger.

Ethics declarations

Competing interests

P.J.D. is employed by Davidson Technology Limited, the company holding the patent application mentioned in ref. 15.

Supplementary information

Supplementary Information

Supplementary Information (PDF 284 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pope, F., Braesicke, P., Grainger, R. et al. Stratospheric aerosol particles and solar-radiation management. Nature Clim Change 2, 713–719 (2012). https://doi.org/10.1038/nclimate1528

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing