Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate change and the South Asian summer monsoon

Abstract

The vagaries of South Asian summer monsoon rainfall on short and long timescales impact the lives of more than one billion people. Understanding how the monsoon will change in the face of global warming is a challenge for climate science, not least because our state-of-the-art general circulation models still have difficulty simulating the regional distribution of monsoon rainfall. However, we are beginning to understand more about processes driving the monsoon, its seasonal cycle and modes of variability. This gives us the hope that we can build better models and ultimately reduce the uncertainty in our projections of future monsoon rainfall.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of summer and winter climate in the South Asian monsoon region.
Figure 2: Historical and SRES A1B projection of South Asian monsoon rainfall.
Figure 3: Precipitation response to doubling of carbon dioxide concentrations.
Figure 4: Probability density functions of interannual variability in monsoon rainfall in control and future climate scenarios.

References

  1. Lau, K. M. & Kim, K-M. The 2010 Pakistan flood and Russian heatwave: Teleconnection of hydrometeorologic extremes. J. Hydrometeorol. 13, 392–403 (2012).

    Article  Google Scholar 

  2. Li, C. F. & Yanai, M. The onset and interannual variability of the Asian summer monsoon in relation to land sea thermal contrast. J. Clim. 9, 358–375 (1996). Useful discussions on the reversal of the meridional temperature gradient essential for monsoon onset and the contribution of sensible and latent heating to warming over the Tibetan Plateau and Indian Ocean respectively.

    Article  Google Scholar 

  3. Fasullo, J. & Webster, P. J. A hydrological definition of Indian monsoon onset and withdrawal. J. Clim. 16, 3200–3211 (2003).

    Article  Google Scholar 

  4. Chou, C. Land-sea heating contrast in an idealized Asian summer monsoon. Clim. Dynam. 21, 11–25 (2003).

    Article  Google Scholar 

  5. Prive, N. C. & Plumb, R. A. Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci. 64, 1417–1430 (2007).

    Article  Google Scholar 

  6. Webster, P. J. et al. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Oceans 103, 14451–14510 (1998). A comprehensive and authoritative review on monsoon processes and predictability.

    Article  Google Scholar 

  7. Meehl, G. A. The annual cycle and interannual variability in the tropical Pacific and Indian-Ocean regions. Mon. Weath. Rev. 115, 27–50 (1987).

    Article  Google Scholar 

  8. Pearce, R. P. & Mohanty, U. C. Onsets of the Asian summer monsoon 1979–82. J. Atmos. Sci. 41, 1620–1639 (1984).

    Article  Google Scholar 

  9. Hoskins, B. J. & Rodwell, M. J. A model of the Asian summer monsoon. Part 1: The global scale. J. Atmos. Sci. 52, 1329–1340 (1995).

    Article  Google Scholar 

  10. Slingo, J., Spencer, H., Hoskins, B., Berrisford, P. & Black, E. The meteorology of the western Indian Ocean, and the influence of the East African highlands. Phil. Trans. R. Soc. A 363, 25–42 (2005).

    Article  Google Scholar 

  11. Findlater, J. A major low-level air current near the Indian Ocean during northern summer: Interhemispheric transport of air in the lower troposphere over western Indian Ocean. Q. J. R. Meteorol. Soc. 96, 551–554 (1970).

    Article  Google Scholar 

  12. Boos, W. R. & Emanuel, K. A. Annual intensification of the Somali jet in a quasi-equilibrium framework: Observational composites. Q. J. R. Meteorol. Soc. 135, 319–335 (2009).

    Article  Google Scholar 

  13. Bordoni, S. & Schneider, T. Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nature Geosci. 1, 515–519 (2008).

    Article  CAS  Google Scholar 

  14. Chou, C. & Neelin, J. D. Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Clim. 16, 406–425 (2003).

    Article  Google Scholar 

  15. Chou, C., Neelin, J. D. & Su, H. Ocean-atmosphere-land feedbacks in an idealized monsoon. Q. J. R. Meteorol. Soc. 127, 1869–1891 (2001).

    Article  Google Scholar 

  16. Rodwell, M. J. & Hoskins, B. J. Monsoons and the dynamics of deserts. Q. J. R. Meteorol. Soc. 122, 1385–1404 (1996).

    Article  Google Scholar 

  17. Shenoi, S. S. C., Shankar, D. & Shetye, S. R. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon. J. Geophys. Res. Oceans 107, 3052 (2002).

    Article  Google Scholar 

  18. Boos, W. R. & Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010).

    Article  CAS  Google Scholar 

  19. Choudhury, A. D. & Krishnan, R. Dynamical response of the South Asian monsoon trough to latent heating from stratiform and convective precipitation. J. Atmos. Sci. 68, 1347–1363 (2011).

    Article  Google Scholar 

  20. Loschnigg, J. & Webster, P. J. A coupled ocean-atmosphere system of SST modulation for the Indian Ocean. J. Clim. 13, 3342–3360 (2000).

    Article  Google Scholar 

  21. Charney, J. G. & Shukla, J. in Monsoon Dynamics (eds Lighthill, J. & Pearce, R. P.) 99–109 (Cambridge Univ. Press, 1981).

    Book  Google Scholar 

  22. Bhat, G. S. The Indian drought of 2002 — a sub-seasonal phenomenon? Q. J. R. Meteorol. Soc. 132, 2583–2602 (2006).

    Article  Google Scholar 

  23. Subbiah, A. Initial Report on the Indian Monsoon Drought of 2002 (Asian Disaster Preparedness Center, 2002).

    Google Scholar 

  24. Gadgil, S. & Gadgil, S. The Indian monsoon, GDP and agriculture. Econ. Polit. Weekly 41, 4887–4895 (2006).

    Google Scholar 

  25. Turner, A. G. & Slingo, J. M. Uncertainties in future projections of extreme precipitation in the Indian monsoon region. Atmos. Sci. Lett. 10, 152–158 (2009).

    Article  Google Scholar 

  26. Sutton, R. T., Dong, B. W. & Gregory, J. M. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett. 34, L02701 (2007).

    Article  Google Scholar 

  27. Knutson, T. R. et al. Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Clim. 19, 1624–1651 (2006).

    Article  Google Scholar 

  28. Parthasarathy, B., Munot, A. A. & Kothawale, D. R. All-India monthly and seasonal rainfall series — 1871–1993. Theor. Appl. Climatol. 49, 217–224 (1994).

    Article  Google Scholar 

  29. Krishnamurthy, V. & Goswami, B. N. Indian monsoon-ENSO relationship on interdecadal timescale. J. Clim. 13, 579–595 (2000).

    Article  Google Scholar 

  30. Ramanathan, V. et al. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl Acad. Sci. USA 102, 5326–5333 (2005).

    Article  CAS  Google Scholar 

  31. Rajeevan, M., Bhate, I., Kale, J. D. & Lal, B. High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Curr. Sci. 91, 296–306 (2006).

    Google Scholar 

  32. Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712 (2005).

    Article  Google Scholar 

  33. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442–1445 (2006). This article describes some of the competing trends in monsoon rainfall characteristics over recent decades.

    Article  CAS  Google Scholar 

  34. Gautam, R., Hsu, N. C., Lau, K. M. & Kafatos, M. Aerosol and rainfall variability over the Indian monsoon region: Distributions, trends and coupling. Ann. Geophys. 27, 3691–3703 (2009).

    Article  CAS  Google Scholar 

  35. Naidu, C. V. et al. Is summer monsoon rainfall decreasing over India in the global warming era? J. Geophys. Res. Atmos. 114, D24108 (2009).

    Article  Google Scholar 

  36. Pattanaik, D. R. Analysis of rainfall over different homogeneous regions of India in relation to variability in westward movement frequency of monsoon depressions. Nat. Hazard. 40, 635–646 (2007).

    Article  Google Scholar 

  37. Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334, 502–505 (2011).

    Article  CAS  Google Scholar 

  38. Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset — a new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

    Article  Google Scholar 

  39. Annamalai, H., Hamilton, K. & Sperber, K. R. The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Clim. 20, 1071–1092 (2007). The effect of increased anthropogenic emissions on the mean monsoon, its interannual variability and teleconnection with ENSO in the CMIP3 models that are judged to reasonably simulate these aspects.

    Article  Google Scholar 

  40. Niyogi, D., Kishtawal, C., Tripathi, S. & Govindaraju, R. S. Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall. Wat. Resour. Res. 46, W03533 (2010).

    Article  Google Scholar 

  41. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  42. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002). Useful discussion on the constraints to change in global mean and extremes of precipitation.

    CAS  Google Scholar 

  43. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  44. Knutson, T. R. & Manabe, S. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Clim. 8, 2181–2199 (1995).

    Article  Google Scholar 

  45. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  46. Gill, A. E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Article  Google Scholar 

  47. Ashrit, R. G., Douville, H. & Kumar, K. R. Response of the Indian monsoon and ENSO-monsoon teleconnection to enhanced greenhouse effect in the CNRM coupled model. J. Meteorol. Soc. Jpn 81, 779–803 (2003).

    Article  Google Scholar 

  48. Hu, Z. Z., Latif, M., Roeckner, E. & Bengtsson, L. Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophys. Res. Lett. 27, 2681–2684 (2000).

    Article  CAS  Google Scholar 

  49. Douville, H. et al. Impact of CO2 doubling on the Asian summer monsoon: Robust versus model-dependent responses. J. Meteorol. Soc. Jpn 78, 421–439 (2000).

    Article  Google Scholar 

  50. May, W. Simulated changes of the Indian summer monsoon under enhanced greenhouse gas conditions in a global time-slice experiment. Geophys. Res. Lett. 29, 1118 (2002).

    Article  Google Scholar 

  51. Cherchi, A., Alessandri, A., Masina, S. & Navarra, A. Effects of increased CO2 levels on monsoons. Clim. Dynam. 37, 83–101 (2011).

    Article  Google Scholar 

  52. May, W. The sensitivity of the Indian summer monsoon to a global warming of 2°C with respect to pre-industrial times. Clim. Dynam. 37, 1843–1868 (2011).

    Article  Google Scholar 

  53. Ueda, H., Iwai, A., Kuwako, K. & Hori, M. E. Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys. Res. Lett. 33, L06703 (2006). Discusses the competition between moisture and circulation changes in determining changes to Asian summer monsoon rainfall in the future.

    Article  Google Scholar 

  54. Kitoh, A., Yukimoto, S., Noda, A. & Motoi, T. Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2 . J. Meteorol. Soc. Jpn 75, 1019–1031 (1997).

    Article  Google Scholar 

  55. Meehl, G. A. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 10 (Cambridge Univ. Press, 2007).

    Google Scholar 

  56. Meehl, G. A. et al. Response of the NCAR climate system model to increased CO2 and the role of physical processes. J. Clim. 13, 1879–1898 (2000).

    Article  Google Scholar 

  57. Douville, H. Impact of regional SST anomalies on the Indian monsoon response to global warming in the CNRM climate model. J. Clim. 19, 2008–2024 (2006).

    Article  Google Scholar 

  58. Ashfaq, M. et al. Suppression of South Asian summer monsoon precipitation in the 21st century. Geophys. Res. Lett. 36, L01704 (2009).

    Article  Google Scholar 

  59. Stowasser, M., Annamalai, H. & Hafner, J. Response of the South Asian summer monsoon to global warming: Mean and synoptic systems. J. Clim. 22, 1014–1036 (2009).

    Article  Google Scholar 

  60. Krishnamurthy, V. & Shukla, J. Intraseasonal and interannual variability of rainfall over India. J. Clim. 13, 4366–4377 (2000).

    Article  Google Scholar 

  61. Krishnamurthy, V. & Shukla, J. Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J. Clim. 20, 3–20 (2007).

    Article  Google Scholar 

  62. Sperber, K. R., Slingo, J. M. & Annamalai, H. Predictability and the relationship between subseasonal and interannual variability during the Asian summer monsoon. Q. J. R. Meteorol. Soc. 126, 2545–2574 (2000).

    Article  Google Scholar 

  63. Wheeler, M. C. & Hendon, H. H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Weath. Rev. 132, 1917–1932 (2004).

    Article  Google Scholar 

  64. Saith, N. & Slingo, J. The role of the Madden-Julian Oscillation in the El Niño and Indian drought of 2002. Int. J. Climatol. 26, 1361–1378 (2006).

    Article  Google Scholar 

  65. Sperber, K. R. & Annamalai, H. Coupled model simulations of boreal summer intraseasonal (30–50 day) variability. Part 1: Systematic errors and caution on use of metrics. Clim. Dynam. 31, 345–372 (2008).

    Article  Google Scholar 

  66. Dhar, O. N. & Nandargi, S. On some characteristics of severe rainstorms of India. Theor. Appl. Climatol. 50, 205–212 (1995).

    Article  Google Scholar 

  67. Ajayamohan, R. S., Merryfield, W. J. & Kharin, V. V. Increasing trend of synoptic activity and its relationship with extreme rain events over central India. J. Clim. 23, 1004–1013 (2010).

    Article  Google Scholar 

  68. Dash, S. K., Kumar, J. R. & Shekhar, M. S. On the decreasing frequency of monsoon depressions over the Indian region. Curr. Sci. 86, 1404–1411 (2004).

    Google Scholar 

  69. Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

    Article  Google Scholar 

  70. Chou, C., Neelin, J. D., Chen, C. A. & Tu, J. Y. Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Clim. 22, 1982–2005 (2009).

    Article  Google Scholar 

  71. Semenov, V. A. & Bengtsson, L. Secular trends in daily precipitation characteristics: Greenhouse gas simulation with a coupled AOGCM. Clim. Dynam. 19, 123–140 (2002).

    Article  Google Scholar 

  72. Turner, A. G. & Slingo, J. M. Subseasonal extremes of precipitation and active-break cycles of the Indian summer monsoon in a climate-change scenario. Q. J. R. Meteorol. Soc. 135, 549–567 (2009).

    Article  Google Scholar 

  73. Tebaldi, C., Hayhoe, K., Arblaster, J. M. & Meehl, G. A. Going to the extremes. Climatic Change 79, 185–211 (2006).

    Article  Google Scholar 

  74. Sun, Y., Solomon, S., Dai, A. & Portmann, R. W. How often does it rain? J. Clim. 19, 916–934 (2006).

    Article  Google Scholar 

  75. Joseph, P. V. & Simon, A. Weakening trend of the southwest monsoon current through peninsular India from 1950 to the present. Curr. Sci. 89, 687–694 (2005).

    Google Scholar 

  76. Dash, S. K., Kulkarni, M. A., Mohanty, U. C. & Prasad, K. Changes in the characteristics of rain events in India. J. Geophys. Res. Atmos. 114, D10109 (2009).

    Article  Google Scholar 

  77. Lin, J-L. et al. Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J. Clim. 21, 4541–4567 (2008).

    Article  Google Scholar 

  78. Kumar, K. K., Rajagopalan, B. & Cane, M. A. On the weakening relationship between the Indian monsoon and ENSO. Science 284, 2156–2159 (1999).

    Article  CAS  Google Scholar 

  79. Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G. & Cane, M. Unraveling the mystery of Indian monsoon failure during El Niño. Science 314, 115–119 (2006).

    Article  CAS  Google Scholar 

  80. Turner, A. G., Inness, P. A. & Slingo, J. M. The effect of doubled CO2 and model basic state biases on the monsoon-ENSO system. I: Mean response and interannual variability. Q. J. R. Meteorol. Soc. 133, 1143–1157 (2007).

    Article  Google Scholar 

  81. Meehl, G. A., Teng, H. Y. & Branstator, G. Future changes of El Niño in two global coupled climate models. Clim. Dynam. 26, 549–566 (2006).

    Article  Google Scholar 

  82. Meehl, G. A. & Arblaster, J. M. Mechanisms for projected future changes in South Asian monsoon precipitation. Clim. Dynam. 21, 659–675 (2003).

    Article  Google Scholar 

  83. Turner, A. G., Inness, P. M. & Slingo, J. M. The role of the basic state in the ENSO-monsoon relationship and implications for predictability. Q. J. R. Meteorol. Soc. 131, 781–804 (2005). Demonstrates the importance of capturing mean state SST in a coupled model for accurate portrayal of the monsoon–ENSO teleconnection.

    Article  Google Scholar 

  84. Joseph, R. & Nigam, S. ENSO evolution and teleconnections in IPCC's twentieth-century climate simulations: Realistic representation? J. Clim. 19, 4360–4377 (2006).

    Article  Google Scholar 

  85. AchutaRao, K. & Sperber, K. R. ENSO simulation in coupled ocean-atmosphere models: Are the current models better? Clim. Dynam. 27, 1–15 (2006).

    Article  Google Scholar 

  86. Lloyd, J., Guilyardi, E., Weller, H. & Slingo, J. The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett. 10, 170–176 (2009).

    Article  Google Scholar 

  87. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci. 3, 391–397 (2010). Succinct review of the projected climatic changes to the mean state of the tropical Pacific and our uncertainty in changes to ENSO frequency and amplitude.

    Article  CAS  Google Scholar 

  88. Wang, B. in Intraseasonal Variability of the Atmosphere-Ocean Climate System (eds Lau, K. M. & Waliser, D. E.) Ch. 10, 307–362 (Springer, 2005).

    Book  Google Scholar 

  89. Prasanna, V. & Annamalai, H. Moist dynamics of extended monsoon breaks over South Asia. J. Clim. 25, 3810–3831 (2012).

    Article  Google Scholar 

  90. Goswami, B. N., Ajayamohan, R. S., Xavier, P. K. & Sengupta, D. Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett. 30, 1431 (2003).

    Google Scholar 

  91. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    Article  Google Scholar 

  92. Dee, D. P. et al. The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  93. Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).

    Article  Google Scholar 

  94. Webster, P. J. & Yang, S. Monsoon and ENSO — selectively interactive systems. Q. J. R. Meteorol. Soc. 118, 877–926 (1992).

    Article  Google Scholar 

  95. Sardeshmukh, P. D., Compo, G. P. & Penland, C. Changes of probability associated with El Niño. J. Clim. 13, 4268–4286 (2000).

    Article  Google Scholar 

  96. Wang, C. A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res. Atmos. 109, D03106 (2004).

    Google Scholar 

  97. Lau, K. M. & Kim, K. M. Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett. 33, L21810 (2006).

    Article  Google Scholar 

  98. Lau, K. M., Kim, M. K. & Kim, K. M. Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Clim. Dynam. 26, 855–864 (2006).

    Article  Google Scholar 

  99. Meehl, G. A., Arblaster, J. M. & Collins, W. D. Effects of black carbon aerosols on the Indian monsoon. J. Clim. 21, 2869–2882 (2008).

    Article  Google Scholar 

  100. Nigam, S. & Bollasina, M. “Elevated heat pump” hypothesis for the aerosol-monsoon hydroclimate link: “Grounded” in observations? J. Geophys. Res. Atmos. 115, D16201 (2010).

    Article  Google Scholar 

  101. Lau, K. M. & Kim, K. M. Comment on '“Elevated heat pump” hypothesis for the aerosol-monsoon hydroclimate link: “Grounded” in observations?”' by S. Nigam and M. Bollasina. J. Geophys. Res. Atmos. 116, D07203 (2011).

    Google Scholar 

  102. Ackerman, A. S. et al. Reduction of tropical cloudiness by soot. Science 288, 1042–1047 (2000).

    Article  CAS  Google Scholar 

  103. Norris, J. R. Has northern Indian Ocean cloud cover changed due to increasing anthropogenic aerosol? Geophys. Res. Lett. 28, 3271–3274 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

A.G.T. is financially supported by a Natural Environment Research Council Postdoctoral Fellowship grant NE/H015655/1. H.A. acknowledges the support of the Office of Science (Biological and Environmental Research) US Department of Energy, grant DE-FG02-07ER6445 and the institutional grants (Japan Agency for Marine–Earth Science and Technology, the National Oceanic and Atmospheric Administration and the National Aeronautics and Space Administration) of the International Pacific Research Center. The authors wish to thank N. Hilbert for assistance in producing the schematic in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew G. Turner or H. Annamalai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, A., Annamalai, H. Climate change and the South Asian summer monsoon. Nature Clim Change 2, 587–595 (2012). https://doi.org/10.1038/nclimate1495

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1495

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing