Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global agriculture and nitrous oxide emissions

Abstract

Nitrous oxide (N2O) is an important anthropogenic greenhouse gas and agriculture represents its largest source. It is at the heart of debates over the efficacy of biofuels, the climate-forcing impact of population growth, and the extent to which mitigation of non-CO2 emissions can help avoid dangerous climate change. Here we examine some of the major debates surrounding estimation of agricultural N2O sources, and the challenges of projecting and mitigating emissions in coming decades. We find that current flux estimates — using either top-down or bottom-up methods — are reasonably consistent at the global scale, but that a dearth of direct measurements in some areas makes national and sub-national estimates highly uncertain. We also highlight key uncertainties in projected emissions and demonstrate the potential for dietary choice and supply-chain mitigation.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Global N2O emissions from agriculture between 1990 and 203010.
Figure 2
Figure 3: Average per capita poultry-meat consumption between 2006 and 2020.
Figure 4: Estimated mass of consumer-phase food waste (left axis), 'avoidable' food waste, and 'avoidable' production-phase N2O emissions (right axis) for five food types in the UK in 200977,81.
Figure 5: Mass of global production (left axis) for five food types in 200929, estimated 'loss and wastage' along supply chain80, and estimated N2O emissions77 (right axis) associated with the production of 'lost and wasted' food (grey bars).

References

  1. Van Vuuren, D. P., Weyant, J. & de la Chesnaye, F. Multi-gas scenarios to stabilize radiative forcing. Energy Econ. 28, 102–120 (2006).

    Article  Google Scholar 

  2. van Beek, C. L., Meerburg, B. G., Schils, R. L. M., Verhagen, J. & Kuikman, P. J. Feeding the world's increasing population while limiting climate change impacts: linking N2O and CH4 emissions from agriculture to population growth. Environ. Sci. Policy 13, 289–96 (2010).

    Article  Google Scholar 

  3. Forester, P. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 130–234 (Cambridge Univ. Press, 2007).

    Google Scholar 

  4. Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).

    CAS  Article  Google Scholar 

  5. Mosier, A. et al. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle – OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr. Cycl. Agroecosys. 52, 225–248 (1998).

    CAS  Article  Google Scholar 

  6. Syakila, A. & Kroeze, C. The global nitrous oxide budget revisited. Greenhouse Gas Measure. Manage. 1, 17–26 (2011).

    CAS  Article  Google Scholar 

  7. Mosier, A. & Kroeze, C. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands. Chemosphere 2, 465–473 (2000).

    CAS  Google Scholar 

  8. Galloway, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    CAS  Article  Google Scholar 

  9. Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geosci. 2, 659–662 (2009).

    CAS  Article  Google Scholar 

  10. US EPA Global Anthropogenic Non-CO2 Greenhouse Gas Emissions 1990–2030 [draft] (US Environmental Protection Agency, 2011).

  11. Denman, K. L. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 499–587 (Cambridge Univ. Press, 2007).

    Google Scholar 

  12. Hutchinson, G. L. & Mosier, A. R. Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci. Soc. Am. J. 45, 311–316 (1981).

    CAS  Article  Google Scholar 

  13. Smith, K. A. et al. The measurement of nitrous oxide emissions from soil by using chambers. Phil. Trans. R. Soc. Lond. A 351, 327–338 (1995).

    CAS  Article  Google Scholar 

  14. Mosier, A. R., Duxbury, J. M., Freney, J. R. & Heinemeyer, O. Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation. Plant Soil 181, 95–108 (1996).

    CAS  Article  Google Scholar 

  15. Stevens, R. J. & Laughlin, R. J. Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutr. Cycl. Agroecosys. 52, 131–13 (1998).

    CAS  Article  Google Scholar 

  16. Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys 8, 389–395 (2008).

    CAS  Article  Google Scholar 

  17. Del Grosso, S. J., Wirth, T., Ogle, S. M. & Parton, W. J. Estimating agricultural nitrous oxide emissions. Trans. Am. Geophys. Union 89, 529–540 (2008).

    Article  Google Scholar 

  18. Nevison, C. & Holland, E. A re-examination of the impact of anthropogenically fixed nitrogen on atmospheric N2O and the stratospheric O3 layer. J. Geophys. Res. 102, 25519–25536 (1997).

    CAS  Article  Google Scholar 

  19. Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).

    Article  Google Scholar 

  20. Smith, K. A., Mosier, A. R., Crutzen, P. J. & Winiwarter, W. The role of N2O derived from biofuels, and from agriculture in general, in Earth's climate. Phil. Trans. R. Soc. B 367, 1169–1174 (2012).

    CAS  Article  Google Scholar 

  21. Freibauer, A. Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. Eur. J. Agron. 19, 135–160 (2003).

    CAS  Article  Google Scholar 

  22. IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) Ch. 11 (IGES, 2006).

  23. Sawamoto, T., Nakajima, Y., Kasuya, M., Tsuruta, H. & Yagi, K. Evaluation of emission factors for indirect N2O emission due to nitrogen leaching in agro-ecosystems. Geophys. Res. Lett. 32, L03403 (2005).

    Article  Google Scholar 

  24. Reay, D. S., Smith, K. A. & Edwards, A. C. Nitrous oxide in agricultural drainage waters. Glob. Change Biol. 9, 195–203 (2003).

    Article  Google Scholar 

  25. Smith, P. et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric. Ecosyst. Environ. 118, 6–28 (2007).

    Article  Google Scholar 

  26. Bryan, E., Akpalu, W., Yesuf, M. & Ringler, C. Global carbon markets: Opportunities for sub-Saharan Africa in the agriculture and forestry. Clim. Dev. 2, 309–331 (2010).

    Article  Google Scholar 

  27. US Census Bureau Total Mid-Year Population for the World 1950–2050; available at http://www.census.gov/population/international/data/idb/worldpoptotal.php

  28. UN FAO World Agriculture: Towards 2030/50 (Interim Report. Food and Agriculture Organization of the United Nations, 2006).

  29. OECD and UN FAO Agricultural Outlook 2011–2020 (Organisation for Economic Co-operation and Development and Food and Agriculture Organization of the United Nations); available at http://stats.oecd.org/

  30. Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).

    Article  Google Scholar 

  31. Smith, P. et al. in IPCC Climate Change 2007: Mitigation (eds Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A.) Ch. 8 (Cambridge Univ. Press, 2007).

    Google Scholar 

  32. Fargione, J. et al. Land clearing and the biofuel carbon debt. Science 319, 1235–1237 (2008).

    CAS  Article  Google Scholar 

  33. Searchinger, T. et al. Use of US land for biofuels increases greenhouse gases through emissions from land-use. Change. Science 319, 1238–1240 (2008).

    CAS  Article  Google Scholar 

  34. Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    CAS  Article  Google Scholar 

  35. Erisman, J. W., van Grinsven, H., Leip, A., Mosier, A. & Bleeker, A. Nitrogen and biofuels; an overview of the current state of knowledge. Nutr. Cycl. Agroecosys. 86, 211–223 (2010).

    CAS  Article  Google Scholar 

  36. Melillo, J. M. et al. Indirect emissions from biofuels: How important? Science 326, 1397–1399 (2009).

    CAS  Article  Google Scholar 

  37. Robertson, P. G. et al. Sustainable biofuels redux. Science 322, 49–50 (2008).

    CAS  Article  Google Scholar 

  38. Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. Global nitrogen deposition and carbon sinks. Nature Geosci. 1, 430–437 (2008).

    CAS  Article  Google Scholar 

  39. Firestone, M. K. et al. in Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere (eds Andreae, M. O., Schimel, D. S. & Robertson, G. P.) 7–21 (Wiley, 1989).

    Google Scholar 

  40. Conen, F. & Neftel, A. Do increasingly depleted δ15N values of atmospheric N2O indicate a decline in soil N2O reduction? Biogeochem. 82, 321–326 (2007).

    CAS  Article  Google Scholar 

  41. Ullah, S. & Zinati, G. M. Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff. Biogeochem. 81, 253–267 (2006).

    CAS  Article  Google Scholar 

  42. Mosier, A. R. Nitrous oxide from agricultural soils. Fert. Res. 37, 191–200 (1994).

    CAS  Article  Google Scholar 

  43. Bremner, J. M. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosys. 49, 7–16 (1997).

    CAS  Article  Google Scholar 

  44. Ambus, P. Nitrous oxide production by denitrification and nitrification in temperate forest, grassland and agricultural soils. Eur. J. Soil Sci. 49, 495–502 (1998).

    CAS  Article  Google Scholar 

  45. Singh, B. K. Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Rev. Microbiol. 8, 779–790 (2010).

    CAS  Article  Google Scholar 

  46. Butterbach-Bahl, K. & Dannenmann, M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr. Opin. Environ. Sustain. 3, 389–395 (2011).

    Article  Google Scholar 

  47. Eckard, R. J. & Cullen, B. R. Impacts of future climate scenarios on nitrous oxide emissions from pasture based dairy systems in south eastern Australia. Animal Feed Sci. Technol. 166–167, 736–748 (2011).

    Article  Google Scholar 

  48. Van Groeningen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2 . Nature 475, 214–216 (2011).

    Article  Google Scholar 

  49. Abdalla, M. et al. Testing DAYCENT and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture. Atmos. Environ. 44, 2961–2970 (2010).

    CAS  Article  Google Scholar 

  50. Kamp, T., Steindl, H., Hantschel, R. E., Beese, F. & Munch, J. C. Nitrous oxide emissions from a fallow and wheat field as affected by increased soil temperatures. Biol. Fert. Soils 27, 302–314 (1998).

    Article  Google Scholar 

  51. Cantarel, A. A. M., Bloor, J. M. G., Deltroy, N & Soussana, J-F. Effects of climate change drivers on nitrous oxide fluxes in an upland temperate grassland. Ecosystems 14, 223–233 (2011).

    CAS  Article  Google Scholar 

  52. Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M. & Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ. Change A 14, 53–67 (2004).

    Article  Google Scholar 

  53. Oleson, J. E. et al. Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change 81, 123–143 (2007).

    Article  Google Scholar 

  54. Sommer, S. G. et al. Processes controlling ammonia emission from livestock slurry in the field. Eur. J. Agron. 19, 465–486 (2003).

    CAS  Article  Google Scholar 

  55. Mkhabela, M. S., Gordon, R., Burton, D., Smith, E. & Madani, A. The impact of management practices and meteorological conditions on ammonia and nitrous oxide emissions following application of hog slurry to forage grass in Nova Scotia. Agr. Ecosyst. Environ. 130, 41–49 (2009).

    CAS  Article  Google Scholar 

  56. UNEP and WHRC Reactive Nitrogen in the Environment: Too Much or Too Little of a Good Thing (United Nations Environment Programme, 2007).

  57. Tilman, D., Cassman, G. K., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  Article  Google Scholar 

  58. Balasubramanian, V. et al. in Agriculture and the Nitrogen Cycle: Assessing the Impacts Of Fertilizer use on Food Production and the Environment (eds Mosier, A. R., Syers, J. K. & Freney, J. R.) 19–43 (Scientific Committee on Problems of the Environment series vol. 65, Island Press, 2004).

    Google Scholar 

  59. Dobermann, A. in Fertilizer Best Management Practices: General Principles, Strategy for their Adoption and Voluntary Initiatives vs Regulations 1–28 (International Fertilizer Industry Association, 2007).

    Google Scholar 

  60. IFA Sustainable Management of the Nitrogen Cycle in Agriculture and Mitigation of Reactive Nitrogen Side Effects (International Fertilizer Industry Association, 2007).

  61. US-EPA Global Mitigation of Non-CO2 Greenhouse Gases (United States Environmental Protection Agency, 2006).

  62. Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).

    CAS  Article  Google Scholar 

  63. Chen, Q. et al. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region. Nutr. Cycl. Agroecosyst. 69, 51–58 (2004).

    Article  Google Scholar 

  64. Garg, A., Shukla, P. R., Kapshe, M. & Manon, D. Indian methane and nitrous oxide emissions and mitigation flexibility. Atmos. Environ. 38, 1965–1977 (2004).

    CAS  Article  Google Scholar 

  65. Flynn, H. C. & Smith, P. Greenhouse Gas Budgets of Crop Production – Current and likely Future Trends First edn (IFA, 2010).

    Google Scholar 

  66. Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch and the Transformation of World Food Production (MIT Press, 2001).

    Google Scholar 

  67. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nature Geosci. 1, 636–639 (2008).

    CAS  Article  Google Scholar 

  68. Johnson, J. M.-F., Franzluebbers, A. J., Lachnicht Weyers, S. & Reicosky, D. C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 150, 107–204 (2007).

    CAS  Article  Google Scholar 

  69. Snyder, C. S., Bruulsema, T. W., Jensen, T. L. & Fixen, P. E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agr. Ecosyst. Environ. 133, 247–266 (2009).

    CAS  Article  Google Scholar 

  70. Del Grosso, S. J. & Grant, D. W. Reducing agricultural GHG emissions: role of biotechnology, organic systems and consumer behaviour. Carbon Manag. 2, 505–508 (2011).

    CAS  Article  Google Scholar 

  71. Vergé, X. P. C., De Kimpe, C. & Desjardins, R. L. Agricultural production, greenhouse gas emissions and mitigation potential. Agr. Forest Meteorol. 142, 255–269 (2007).

    Article  Google Scholar 

  72. Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).

    CAS  Article  Google Scholar 

  73. Winiwater, W. et al. in European Nitrogen Assessment: Sources, Effects and Policy Perspectives (eds Sutton, M. A. et al.) Ch. 24, 551–569 (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  74. Stehfest, E. et al. Climate benefits of changing diet. Climatic Change 95, 83–102 (2009).

    CAS  Article  Google Scholar 

  75. McMichael, A. J., Powles, J. W., Butler, C. D. & Uauy, R. Food, livestock production, energy, climate change, and health. Lancet 370, 1253–1263 (2007).

    Article  Google Scholar 

  76. Edwards, P. & Roberts, I. Population adiposity and climate change. Int. J. Epidemiol. 38, 1137–1140 (2009).

    Article  Google Scholar 

  77. Williams, A. G., Audsley, E. & Sandars, D. L. Determining the Environmental Burdens and Resource use in the Production of Agricultural and Horticultural Commodities (Cranfield University and Defra, UK, 2006).

    Google Scholar 

  78. UN FAO The State of World Fisheries and Aquaculture, 2008 (Food and Agriculture Organization of the United Nations, 2009).

  79. Williams J. & Crutzen P. J. Nitrous oxide from aquaculture. Nature Geosci. 3, 143 (2010).

    CAS  Article  Google Scholar 

  80. UN FAO Global Food Losses and Waste (Food and Agriculture Organization of the United Nations, 2011).

  81. WRAP Household food and drink waste in the UK (Waste & Resources Action Programme, UK, 2009).

  82. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.S.R. conceived the Review, conducted the analyses of diet and food waste impacts, and prepared the manuscript. All authors contributed in the writing and editing of the manuscript.

Corresponding author

Correspondence to Dave S. Reay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Global agriculture and nitrous oxide emissions (PDF 325 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reay, D., Davidson, E., Smith, K. et al. Global agriculture and nitrous oxide emissions. Nature Clim Change 2, 410–416 (2012). https://doi.org/10.1038/nclimate1458

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1458

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing