Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vulnerability of cloud forest reserves in Mexico to climate change


Tropical montane cloud forests are among the most vulnerable terrestrial ecosystems to climate change1,2,3 owing to their restricted climatic requirements and their narrow and fragmented distribution4. Although 12% of Mexican cloud forest is protected, it is not known whether reserves will ensure the persistence of the ecosystem and its endemic species under climate change. Here, we show that 68% of Mexico’s cloud forest could vanish by 2080 because of climate change and more than 90% of cloud forest that is protected at present will not be climatically suitable for that ecosystem in 2080. Moreover, if we assume unprotected forests are cleared, 99% of the entire ecosystem could be lost through a combination of climate change and habitat loss, resulting in the extinction of about 70% of endemic cloud forest vertebrate species. Immediate action is required to minimize this loss—expansion of the protected-area estate in areas of low climate vulnerability is an urgent priority. Our analysis indicates that one key area for immediate protection is the Sierra de Juárez in Oaxaca. This area supports many endemic species and is expected to retain relatively large fragments of cloud forest despite rapid climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cloud forest extent and protection for 2010 and 2080.
Figure 2: Present and projected distribution of Mexican cloud forest.
Figure 3: Overlap of geographic ranges of vertebrates restricted to a single cloud forest region with the present extent of cloud forest.

Similar content being viewed by others


  1. Pounds, A. J., Fogden, M. P. L. & Campbell, J. H. Biological response to climate change on a tropical mountain. Nature 398, 611–615 (1999).

    Article  CAS  Google Scholar 

  2. Still, C. J., Foster, P. N. & Schneider, S. H. Simulating the effects of climate change on tropical montane cloud forests. Nature 398, 608–610 (1999).

    Article  CAS  Google Scholar 

  3. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    Article  CAS  Google Scholar 

  4. Foster, P. The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci. Rev. 55, 73–106 (2001).

    Article  Google Scholar 

  5. Flores-Villela, O. & Gerez, P. Biodiversidad y Conservación en México: Vertebrados y uso de Suelo (Comisión Nacional para el Uso y Conservación de la Biodiversidad, Universidad Nacional Autónoma de México, 1994).

  6. Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds) Tropical Montane Cloud Forests (Springer, 1995).

  7. Bruijinzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds) Tropical Montane Cloud Forests: Science for Conservation and Management (Cambridge Univ. Press, 2010).

  8. IUCN & UNEP–WCMC The World Database on Protected Areas (2010); available at

  9. Estrada, F., Martinez-Lopez, B., Conde, C. & Gay-Garcia, C. The new national climate change documents of Mexico: What do the regional climate change scenarios represent? Climatic Change 10, 1–18 (2011).

    Google Scholar 

  10. Ceballos, G. & Oliva, G. (eds) Los Mamiferos Silvestres de Mexico (Fondo de Cultura Económica, 2005).

  11. Tosi, J. A. J., Watson, V. & Echeverria, J. Potential Impacts of Climatic Change on the Productive Capacity of Costa Rican Forests: A Case Study (Tropical Science Center, 1992).

  12. Pounds, A. J. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).

    Article  CAS  Google Scholar 

  13. Bush, M. B., Silman, M. R. & Urrego, D. H. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827–829 (2004).

    Article  CAS  Google Scholar 

  14. Magrin, G. et al. in IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) Ch. 13 (Cambridge Univ. Press, 2007).

    Google Scholar 

  15. Cairns, M. A., Dirzo, R. & Zadroga, F. Forests of Mexico: A diminishing resource? J. For. 93, 21–24 (1995).

    Google Scholar 

  16. Masera, O., Ordoñez, M. J. & Dirzo, R. in Carbon Emissions and Sequestration in Forests: Case Studies from Seven Developing Countries (eds Makundi, W. & Sathaye, J.) (Univ. California, 1992).

    Google Scholar 

  17. Sayer, J. A. & Whitmore, T. C. Tropical moist forests: Destruction and species extinction. Biol. Con. 55, 199–213 (1991).

    Article  Google Scholar 

  18. Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    Article  CAS  Google Scholar 

  19. Soares-Filho, B. S. et al. Modelling conservation in the Amazon basin. Nature 440, 520–523 (2006).

    Article  CAS  Google Scholar 

  20. Ricketts, T. H. et al. Pinpointing and preventing imminent extinctions. Proc. Natl Acad. Sci. USA 102, 18497–18501 (2005).

    Article  CAS  Google Scholar 

  21. Joppa, L. N. & Pfaff, A. Re-assessing the forest impacts of protection: The challenge of non-random location & a corrective method. Annu. Rev. Ecol. Econ. 1185, 135–149 (2010).

    Google Scholar 

  22. Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).

    Article  CAS  Google Scholar 

  23. McDonald-Madden, E., Runge, M. C., Possingham, H. P. & Martin, T. G. Optimal timing for managed relocation of species faced with climate change. Nature Clim. Change 1, 261–265 (2011).

    Article  Google Scholar 

  24. Phillips, S. J. & Dudı´k, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Article  Google Scholar 

  25. Instituto Nacional de Estadı´stica y Geografı´a Carta de Uso Actual del Suelo y Vegetación Serie III (Instituto Nacional de Estadı´stica y Geografı´a, 2005).

  26. Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).

    Article  CAS  Google Scholar 

  27. Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).

    Article  Google Scholar 

  28. Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).

    Article  Google Scholar 

  29. Hijmans, R. J. et al. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  30. Machac, A., Janda, M., Dunn, R. & Sanders, N. J. Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography 24, 364–371 (2010).

    Google Scholar 

  31. Jarvis, A. & Mulligan, M. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijinzeel, L. A., Scatena, F. N. & Hamilton, L. S.) (Cambridge Univ. Press, 2010).

    Google Scholar 

  32. IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., vander Lunden, P. J., & Hanson, C. E.) (Cambridge Univ. Press, 2007).

  33. Ramirez, J. & Jarvis, A. High Resolution Statistically Downscaled Future Climate Surfaces (International Centre for Tropical Agriculture, 2008).

  34. Instituto Nacional de Investigaciones Forestales y Agropecuarias Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad (INIFAP, 1995).

  35. Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

Download references


We thank M. A. Gurrola and A. González-Hernández for help compiling data. This work is financially supported by the Consejo Nacional de Ciencia y Tecnología, Rufford Small Grants for Conservation, an Australian Research Council Federation Fellowship to H.P.P. and the Australian Research Council Centre of Excellence for Environmental Decisions.

Author information

Authors and Affiliations



R.P-R., J.E.M.W., V-H.R., J.V., R.L.P. and H.P.P. designed the study. R.P-R. carried out the research. R.P-R. and R.A.F. analysed the data. All the authors wrote the paper.

Corresponding author

Correspondence to Rocío Ponce-Reyes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponce-Reyes, R., Reynoso-Rosales, VH., Watson, J. et al. Vulnerability of cloud forest reserves in Mexico to climate change. Nature Clim Change 2, 448–452 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing