Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate-induced range contraction drives genetic erosion in an alpine mammal


Increasing documentation of changes in the distribution of species provides evidence of climate change impacts1, yet surprisingly little empirical work has endeavoured to quantify how such recent and rapid changes impact genetic diversity2. Here we compare modern and historical specimens spanning a century to quantify the population genetic effects of a climate-driven elevational range contraction in the alpine chipmunk, Tamias alpinus, in Yosemite National Park, USA. Previous work showed that T. alpinus responded to warming in the park by retracting its lower elevational limit upslope by more than 500 m, whereas the closely related chipmunk T. speciosus remained stable3,4. Consistent with a reduced and more fragmented range, we found a decline in overall genetic diversity and increased genetic subdivision in T. alpinus. In contrast, there were no significant genetic changes in T. speciosus over the same time period. This study demonstrates genetic erosion accompanying a climate-induced range reduction and points to decreasing size and increasing fragmentation of montane populations as a result of global warming.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Study area and sampling localities.
Figure 2: Changes in genetic population structure and diversity.


  1. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  2. Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nature Clim. Change 1, 313–318 (2011).

    Article  Google Scholar 

  3. Moritz, C. et al. Impact of a century of climate change on small mammal communities in Yosemite National Park, USA. Science 322, 261–264 (2008).

    CAS  Article  Google Scholar 

  4. Rubidge, E. M., Monahan, W. B., Parra, J. L., Cameron, S. E. & Brashares, J. S. The role of climate, habitat, and species co-occurrence as drivers of change in small mammal distributions over the past century. Glob. Change Biol. 17, 696–708 (2011).

    Article  Google Scholar 

  5. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    CAS  Article  Google Scholar 

  6. Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).

    CAS  Article  Google Scholar 

  7. Blois, J. J. & Hadly, E. A. Mammalias response to Cenozoic climate change. Annu. Rev. Earth Planet. Sci. 37, 181–208 (2009).

    CAS  Article  Google Scholar 

  8. Blois, J. L., Mcguire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–775 (2010).

    CAS  Article  Google Scholar 

  9. Ozgul, A. et al. Coupled dynamics of body mass and population growth in response to environmental change. Nature 466, 482–485 (2010).

    CAS  Article  Google Scholar 

  10. Réale, D., McAdam, A. G., Boutin, S. & Berteaux, D. Genetic and plastic responses of a northern mammal to climate change. Proc. R. Soc. Lond. B 270, 591–596 (2003).

    Article  Google Scholar 

  11. Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternery. Phil. Trans. R. Soc. Lond. B 359, 183–195 (2004).

    CAS  Article  Google Scholar 

  12. Soulé, M. E. in Conservation Biology: An Evolutionary-Ecological Perspective (eds Soulé, M. E. & Wilcox, B. A.) 151–169 (Sinauer, 1980).

    Google Scholar 

  13. Epps, C. W., Palsboll, P. J., Wehausen, J. D., Roderick, G. K. & McCullough, D. R. Elevation and connectivity define genetic refugia for mountain sheep as climate warms. Mol. Ecol. 15, 4295–4302 (2006).

    Article  Google Scholar 

  14. Ditto, A. & Frey, J. Effects of ecogeographic variables on genetic variation in montane mammals: Implications for conservation in a global warming scenario. J. Biogeogr. 34, 1136–1149 (2007).

    Article  Google Scholar 

  15. Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS  Article  Google Scholar 

  16. Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl Acad. Sci. USA 101, 15261–15264 (2004).

    CAS  Article  Google Scholar 

  17. Cayan, D. R., Maurer, E. P., Dettinger, M. D., Tyree, M. & Hayhoe, K. Climate change scenarios for the California region. Climatic Change 87, S21–S42 (2008).

    Article  Google Scholar 

  18. Sih, A., Jonsson, B. G. & Luikart, G. Habitat loss: ecological, evolutionary and genetic consequences. Trends Ecol. Evol. 15, 132–134 (2000).

    Article  Google Scholar 

  19. McCallum, H. & Dobson, A. Disease, habitat fragmentation and conservation. Proc. R. Soc. Lond. B 269, 2041–2049 (2002).

    Article  Google Scholar 

  20. Hoffmann, A. A. & Willi, Y. Detecting genetic responses to environmental change. Nature Rev. Genet. 19, 421–432 (2008).

    Article  Google Scholar 

  21. Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merila, J. Climate change and evolution: Disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008).

    CAS  Article  Google Scholar 

  22. Mullen, L. M., Hoekstra, H. E. & Feder, J. Natural selection along an environmental gradient: A classic cline in mouse pigmentation. Evolution 62, 1555–1570 (2009).

    Article  Google Scholar 

  23. Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249 (1995).

    Article  Google Scholar 

  24. Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).

    CAS  Article  Google Scholar 

  25. Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford Univ. Press, 2000).

    Google Scholar 

  26. Kalinowski, S.T. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).

    CAS  Article  Google Scholar 

  27. Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  Google Scholar 

  28. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  Google Scholar 

  29. Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  Article  Google Scholar 

  30. Jensen, J. L., Bohonak, A. J. & Kelley, S. T. Isolation by Distance Web Service BMC Genetics 6: 13. v.3.16 (2005).

Download references


We are grateful to C. Conroy, the YNP resurvey field team, C. Patton and L. Chow for their role in collecting the modern field data and P. Elsen for his assistance in the lab. E.M.R. was supported by a National Science & Engineering Research Council PGS-D award, the Museum of Vertebrate Zoology and the Environmental Science, Policy and Management Department at the University of California, Berkeley, during this research. The project was financially supported by the Museum of Vertebrate Zoology at the University of California, Berkeley, the Yosemite Fund, the National Geographic Society and the National Science Foundation.

Author information

Authors and Affiliations



E.M.R., J.L.P. and C.M. designed the study; E.M.R., J.L.P. and M.L. collected data; E.M.R. analysed and interpreted data; E.M.R., C.M., A.C.B. and J.S.B. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Emily M. Rubidge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rubidge, E., Patton, J., Lim, M. et al. Climate-induced range contraction drives genetic erosion in an alpine mammal. Nature Clim Change 2, 285–288 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing