Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Quantifying future climate change

Abstract

Quantitative projections of future climate are in increasing demand from the scientific community, policymakers and other stakeholders. Climate models of varying complexity are used to make projections, but approximations and inadequacies or 'errors' in models mean that those projections are uncertain, sometimes exploring a very wide range of possible futures. Techniques for quantifying the uncertainties are described here in terms of a common framework whereby models are used to explore relationships between past climate and climate change and future projections. Model parameters may be varied to produce a range of different simulations of past climate that are then compared with observations using 'metrics'. If the model parameters can be constrained to a tighter range as a result of observational comparisons, projections can also be constrained to a tighter range. The strengths and weaknesses of different implementations are discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of the general framework for producing projections of future climate.
Figure 2: A PDF for the climate sensitivity obtained using a simple EBM approach12.
Figure 3: Global temperature anomalies.
Figure 4: Arctic sea-ice extent.
Figure 5: PDFs of 20-year average changes in Northern Europe.

Similar content being viewed by others

References

  1. Pall, P. et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–385 (2011).

    Article  CAS  Google Scholar 

  2. Challinor, A. J., Simelton, E. S., Fraser, E. D. G., Hemming, D. & Collins, M. Increased crop failure due to climate change: Assessing adaptation options using models and socio-economic data for wheat in China. Environ. Res. Lett. 5, http://dx.doi.org/10.1088/1748–9326/5/3/034012 (2010).

  3. Murphy, J. M. et al. Climate Change Projections UKCP09 (Defra, 2009).

    Google Scholar 

  4. Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset — A new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

    Article  Google Scholar 

  5. Knutti, R. et al. IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections (eds Stocker, T. F. et al.) (IPCC Working Group I Technical Support Unit, 2010).

    Google Scholar 

  6. Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A 365, 2053–2075 (2007).

    Article  Google Scholar 

  7. Annan, J. D. & Hargreaves, J. C. Reliability of the CMIP3 ensemble. Geophys. Res. Lett. 37, L02703 (2010).

    Article  Google Scholar 

  8. Yokohata, T. et al. Reliability of multi-model and structurally different single-model ensembles. Clim. Dynam. http://dx.doi.org/10.1007/s00382-011-1203-1 (2011).

  9. Chandler, R. E. Exploiting Strength, Discounting Weakness: Combining Information from Multiple Climate Simulators Research Report No. 311 (Department of Statistical Science, Univ. College London, 2011); available at http://www.ucl.ac.uk/statistics/research/reports.

    Google Scholar 

  10. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).

    Article  Google Scholar 

  11. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dynam. 37, 407–418 (2011).

    Article  Google Scholar 

  12. Gregory, J., Stouffer, R., Raper, S., Stott, P. & Rayner, N. An observationally based estimate of the climate sensitivity. J. Clim. 15, 3117–3121 (2002).

    Article  Google Scholar 

  13. Roe, G. & Baker, M. Why is climate sensitivity so unpredictable? Science 318, 629–632 (2007).

    Article  CAS  Google Scholar 

  14. Roe, G. & Armour, K. How sensitive is climate sensitivity? Geophys. Res. Lett. 38, L14708 (2011).

    Article  Google Scholar 

  15. Armour, K. & Roe, G. Climate commitment in an uncertain world. Geophys. Res. Lett. 38, L01707 (2011).

    Article  Google Scholar 

  16. Annan, J. D. & Hargreaves, J. C. On the generation and interpretation of probabilistic estimates of climate sensitivity. Climatic Change 104, 423–436 (2011).

    Article  Google Scholar 

  17. Hannart, A., Dufresne, J. & Naveau, P. Why climate sensitivity may not be so unpredictable. Geophys. Res. Lett. 36, L16707 (2009).

    Article  Google Scholar 

  18. Zaliapin, I. & Ghil, M. Another look at climate sensitivity. Nonlinear Proc. Geophys. 17, 113–122 (2010).

    Article  Google Scholar 

  19. Frame, D. et al. Constraining climate forecasts: The role of prior assumptions. Geophys. Res. Lett. 32, L022241 (2005).

    Article  Google Scholar 

  20. Gregory, J. & Forster, P. Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res. Atmos. 113, D23105 (2008).

    Article  Google Scholar 

  21. Hegerl, G., Crowley, T., Hyde, W. & Frame, D. Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440, 1029–1032 (2006).

    Article  CAS  Google Scholar 

  22. Schneider von Deimling, T., Held, H., Ganopolski, A. & Rahmstorf, S. Climate sensitivity estimated from ensemble simulations of glacial climate. Clim. Dynam. 27, 149–163 (2006).

    Article  Google Scholar 

  23. Edwards, T., Crucifix, M. & Harrison, S. Using the past to constrain the future: how the palaeorecord can improve estimates of global warming. Prog. Phys. Geog. 31, 481–500 (2007).

    Article  Google Scholar 

  24. Harris, G. R. et al. Frequency distributions of transient regional climate change from perturbed physics ensembles of general circulation model simulations. Clim. Dynam. 27, 357–375 (2006).

    Article  Google Scholar 

  25. Stott, P. A., Kettleborough, J. A. & Allen, M. R. Uncertainty in continental-scale temperature predictions. Geophys. Res. Lett. 33, L02708 (2006).

    Article  Google Scholar 

  26. Stott, P. A. & Kettleborough, J. Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 416, 723–726 (2002); erratum ibid 417, 205 (2002).

    Article  CAS  Google Scholar 

  27. Stott, P. A. et al. Observational constraints on past attributable warming and predictions of future global warming. J. Clim. 19, 3055–3069 (2006).

    Article  Google Scholar 

  28. Boe, J., Hall, A. & Qu, X. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nature Geosci. 2, 341–343 (2009).

    Article  CAS  Google Scholar 

  29. Hall, A. & Qu, X. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett. 33, L03502 (2006).

    Google Scholar 

  30. Collins, M. et al. Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim. Dynam. 36, 1737–1766 (2011).

    Article  Google Scholar 

  31. Collins, M. et al. Towards quantifying uncertainty in transient climate change. Clim. Dynam. 27, 127–147 (2006).

    Article  Google Scholar 

  32. Murphy, J. M. et al. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430, 768–772 (2004).

    Article  CAS  Google Scholar 

  33. Stainforth, D. et al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, 403–406 (2005).

    Article  CAS  Google Scholar 

  34. Brierley, C. M., Collins, M. & Thorpe, A. J. The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model. Clim. Dynam. 34, 325–343 (2010).

    Article  Google Scholar 

  35. Rougier, J. Probabilistic inference for future climate using an ensemble of climate model evaluations. Climatic Change 81, 247–264 (2007).

    Article  Google Scholar 

  36. Murphy, J. M. et al. A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Phil. Trans. R. Soc. A 365, 1993–2028 (2007).

    Article  CAS  Google Scholar 

  37. Sexton, D., Murphy, J., Collins, M. & Webb, M. Multivariate predictions using imperfect climate models: Part 1 outline of methodology. Clim. Dynam. http://dx.doi.org/10.1007/s00382-011-1208-9 (2011).

  38. Rougier, J., Sexton, D. M. H., Murphy, J. M. & Stainforth, D. Analyzing the climate sensitivity of the HadSM3 climate model using ensembles from different but related experiments. J. Clim. 22, 3540–3557 (2009).

    Article  Google Scholar 

  39. Harris, G. R., Collins, M., Sexton, D. M. H., Murphy, J. M. & Booth, B. B. B. Probabilistic projections for 21st century European climate. Nat. Hazard. Earth Sys. 10, 2009–2020 (2010).

    Article  Google Scholar 

  40. Knutti, R., Furrer, R., Tebaldi, C., Cermak, J. & Meehl, G. Challenges in combining projections from multiple climate models. J. Clim. 23, 2739–2758 (2010).

    Article  Google Scholar 

  41. Philip, S. & van Oldenborgh, G. Atmospheric properties of ENSO: Models versus observations. Clim. Dynam. 34, 1073–1091 (2010).

    Article  Google Scholar 

  42. Philip, S., Collins, M., van Oldenborgh, G. & van den Hurk, B. The role of atmosphere and ocean physical processes in ENSO in a perturbed physics coupled climate model. Ocean Sci. 6, 441–459 (2010).

    Article  Google Scholar 

  43. Huntingford, C. & Cox, P. An analogue model to derive additional climate change scenarios from existing GCM simulations. Clim. Dynam. 16, 575–586 (2000).

    Article  Google Scholar 

  44. Hegerl, G. C. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 663–745 (Cambridge Univ. Press, 2007).

    Google Scholar 

Download references

Acknowledgements

Financial support for the programme on Mathematical and Statistical Approaches to Climate Modelling and Prediction was provided by the Isaac Newton Institute and by the UK Natural Environment Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Quantifying future climate change (PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, M., Chandler, R., Cox, P. et al. Quantifying future climate change. Nature Clim Change 2, 403–409 (2012). https://doi.org/10.1038/nclimate1414

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing