Shrinking body size as an ecological response to climate change


Determining how climate change will affect global ecology and ecosystem services is one of the next important frontiers in environmental science. Many species already exhibit smaller sizes as a result of climate change and many others are likely to shrink in response to continued climate change, following fundamental ecological and metabolic rules. This could negatively impact both crop plants and protein sources such as fish that are important for human nutrition. Furthermore, heterogeneity in response is likely to upset ecosystem balances. We discuss future research directions to better understand the trend and help ameliorate the trophic cascades and loss of biodiversity that will probably result from continued decreases in organism size.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Working hypothesis of the major processes of climate change effects on organism size.


  1. 1

    IPCC Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) (Cambridge Univ. Press, 2001).

  2. 2

    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  3. 3

    Biro, P. A., Beckmann, C. & Stamps, J. A. Small within-day increases in temperature affects boldness and alters personality in coral reef fish. Proc. R. Soc. B. 277, 71–77 (2010).

    Article  Google Scholar 

  4. 4

    Brodie, E. D. & Russell, N. H. The consistency of individual differences in behaviour: temperature effects on antipredator behaviour in garter snakes. Anim. Behav. 57, 445–451 (1999).

    Article  Google Scholar 

  5. 5

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003). A comprehensive review of phonological changes in response to climate change.

    CAS  Article  Google Scholar 

  6. 6

    Parolin, P., Lucas, C., Piedade, M. T. F. & Wittmann, F. Drought responses of flood-tolerant trees in Amazonian floodplains. Ann. Bot. 105, 129–139 (2010).

    Article  Google Scholar 

  7. 7

    Bizer, J. R. Growth rates and size at metamorphosis of high elevation populations of Ambystoma tigrinum. Oecologia 34, 175–184 (1978).

    Article  Google Scholar 

  8. 8

    Irie, T. & Fischer, K. Ectotherms with a calcareous exoskeleton follow the temperature-size rule-evidence from field survey. Mar. Ecol. Prog. Ser. 385, 33–37 (2009).

    Article  Google Scholar 

  9. 9

    Bickford, D., Sheridan, J. A. & Howard, S. D. Climate change responses: Forgetting frogs, ferns, and flies? Trends Ecol. Evol. (2011).

  10. 10

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009). One of the first papers to suggest a link between climate warming and reduced body size.

    CAS  Article  Google Scholar 

  11. 11

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011). A review of the trends in size reductions associated with climate change, focusing on birds and other endotherms.

    Article  Google Scholar 

  12. 12

    Smith, J. J., Hasiotis, S. T., Kraus, M. J. & Woody, D. T. Transient dwarfism of soil fauna during the Paleocene–Eocene Thermal Maximum. Proc. Natl Acad. Sci. USA 106, 17655–17660 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Hadly, E. A., Kohn, M. H., Leonard, J. A. & Wayne, R. K. A genetic record of population isolation in pocket gophers during Holocene climatic change. Proc. Natl Acad. Sci. USA 95, 6893–6896 (1998).

    CAS  Article  Google Scholar 

  14. 14

    Blois, J. L., Feranec, R. S. & Hadly, E. A. Environmental influences on spatial and temporal patterns of body-size variation in California ground squirrels (Spermophilus beecheyi). J. Biogeogr. 35, 602–613 (2008).

    Article  Google Scholar 

  15. 15

    Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O. M. E. & Falkowski, P. G. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc. Natl Acad. Sci. USA 102, 8927–8932 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Smith, F. A., Betancourt, J. L. & Brown, J. H. Evolution of body-size in the woodrat over the past 25,000 years of climate change. Science 270, 2012–2014 (1995).

    CAS  Article  Google Scholar 

  17. 17

    Jokiel, P. L. et al. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27, 473–483 (2008).

    Article  Google Scholar 

  18. 18

    Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Gooding, R. A., Harley, C. D. G. & Tang, E. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proc. Natl Acad. Sci. USA 106, 9316–9321 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676–679 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Hovenden, M. J. et al. Warming and elevated CO2 affect the relationship between seed mass, germinability and seedling growth in Austrodanthonia caespitosa, a dominant Australian grass. Glob. Change Biol. 14, 1633–1641 (2008).

    Article  Google Scholar 

  22. 22

    Kim, S. H. et al. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2 . Environ. Exp. Bot. 61, 224–236 (2007).

    Article  CAS  Google Scholar 

  23. 23

    Ledesma, N. A., Nakata, M. & Sugiyama, N. Effect of high temperature stress on the reproductive growth of strawberry cvs. 'Nyoho' and 'Toyonoka'. Sci. Hortic. 116, 186–193 (2008).

    Article  Google Scholar 

  24. 24

    Utsunomiya, N. Effect of temperature on shoot growth, flowering and fruit growth of purple passionfruit (Passiflora edulis Sims var. edulis). Sci. Hortic. 52, 63–68 (1992).

    Article  Google Scholar 

  25. 25

    Williamson, C. E., Grad, G., De Lange, H. J., Gilroy, S. & Karapelou, D. M. Temperature-dependent ultraviolet responses in zooplankton: Implications of climate change. Limnol. Oceanogr. 47, 1844–1848 (2002).

    Article  Google Scholar 

  26. 26

    Desai, A. S. & Singh, R. K. The effects of water temperature and ration size on growth and body composition of fry of common carp, Cyprinus carpio. J. Therm. Biol. 34, 276–280 (2009).

    Article  Google Scholar 

  27. 27

    Sahin, T. Effect of water temperature on growth of hatchery reared Black Sea turbot, Scophthalmus maximus (Linnaeus, 1758). Turk. J. Zool. 25, 183–186 (2001).

    Google Scholar 

  28. 28

    Stillwell, R. C. & Fox, C. W. Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: local adaptation versus phenotypic plasticity. Oikos 118, 703–712 (2009).

    Article  Google Scholar 

  29. 29

    Vincent, G., de Foresta, H. & Mulia, R. Co-occurring tree species show contrasting sensitivity to ENSO-related droughts in planted dipterocarp forests. Forest Ecol. Manage. 258, 1316–1322 (2009).

    Article  Google Scholar 

  30. 30

    Brady, L. D. & Griffiths, R. A. Developmental responses to pond desiccation in tadpoles of the British anuran amphibians (Bufo bufo, B. calamita and Rana temporaria). J. Zool. 252, 61–69 (2000).

    Article  Google Scholar 

  31. 31

    Crump, M. L. Effect of habitat drying on developmental time and size at metamorphosis in Hyla pseudopuma. Copeia 1989, 794–797 (1989).

    Article  Google Scholar 

  32. 32

    Denver, R. J., Mirhadi, N. & Phillips, M. Adaptive plasticity in amphibian metamorphosis: Response of Scaphiopus hammondii tadpoles to habitat desiccation. Ecology 79, 1859–1872 (1998).

    Google Scholar 

  33. 33

    Yom-Tov, Y. & Geffen, E. Geographic variation in body size: the effects of ambient temperature and precipitation. Oecologia 148, 213–218 (2006).

    Article  Google Scholar 

  34. 34

    Jacoby, G. C. & Darrigo, R. D. Tree ring width and density: evidence of climatic and potential forest change in Alaska. Glob. Biogeochem. Cycles 9, 227–234 (1995).

    CAS  Article  Google Scholar 

  35. 35

    Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2 . Nature 440, 922–925 (2006).

    CAS  Article  Google Scholar 

  36. 36

    Barber, V. A., Juday, G. P. & Finney, B. P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405, 668–673 (2000).

    CAS  Article  Google Scholar 

  37. 37

    Franks, S. J. & Weis, A. E. A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant. J. Evol. Biol. 21, 1321–1334 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Reading, C. J. Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 151, 125–131 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Loehr, V. J. T., Hofmeyr, M. D. & Henen, B. T. Growing and shrinking in the smallest tortoise, Homopus signatus signatus: the importance of rain. Oecologia 153, 479–488 (2007).

    Article  Google Scholar 

  40. 40

    Wikelski, M. & Thom, C. Marine iguanas shrink to survive El Niño. Nature 403, 37–38 (2000).

    CAS  Article  Google Scholar 

  41. 41

    Gardner, J. L., Heinsohn, R. & Joseph, L. Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proc. R. Soc. B 276, 3845–3852 (2009).

    Article  Google Scholar 

  42. 42

    Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C. J. R. & Du Feu, R. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91–101 (2006).

    Article  Google Scholar 

  43. 43

    Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merila, J. Bergmann's rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. Proc. Natl Acad. Sci. USA 105, 13492–13496 (2008).

    CAS  Article  Google Scholar 

  44. 44

    Yom-Tov, Y. Global warming and body mass decline in Israeli passerine birds. Proc. R. Soc. Lond. B 268, 947–952 (2001).

    CAS  Article  Google Scholar 

  45. 45

    Smith, F. A., Browning, H. & Shepherd, U. L. The influence of climate change on the body mass of woodrats Neotoma in an arid region of New Mexico, USA. Ecography 21, 140–148 (1998).

    Article  Google Scholar 

  46. 46

    Ozgul, A. et al. The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325, 464 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Post, E., Stenseth, N. C., Langvatn, R. & Fromentin, J. M. Global climate change and phenotypic variation among red deer cohorts. Proc. R. Soc. Lond. B. 264, 1317–1324 (1997). One of the first examples of reduced body size associated with climate warming.

    CAS  Article  Google Scholar 

  48. 48

    Regehr, E. V., Amstrup, S. C. & Stirling, I. Polar Bear Population Status in the Southern Beaufort Sea Open-File Report 2006–1337 (US Geological Survey, 2006).

    Google Scholar 

  49. 49

    Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).

    Article  Google Scholar 

  50. 50

    Vitousek, P. M., Gosz, J. R., Grier, C. C., Melillo, J. M. & Reiners, W. A. A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecol. Monogr. 52, 155–177 (1982).

    CAS  Article  Google Scholar 

  51. 51

    Ojima, D. S. The Short-Term and Long-Term Effect of Burning on Tallgrass Prairie Ecosystem Properties and Dynamics PhD thesis, Colorado State Univ. (1987).

    Google Scholar 

  52. 52

    Reiners, W. S. Nitrogen cycling in relation to ecosystem succession: a review. Ecol. Bull. 33, 507–528 (1981).

    Google Scholar 

  53. 53

    Austin, A. T. & Vitousek, P. M. Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia 113, 519–529 (1998).

    Article  Google Scholar 

  54. 54

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001). A comprehensive presentation of the link between temperature and metabolism, central to size reductions in ectotherms.

    CAS  Article  Google Scholar 

  55. 55

    Bickford, D., Howard, S. D., Ng, D. J. J. & Sheridan, J. A. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers. Conserv. 19, 1043–1062 (2010).

    Article  Google Scholar 

  56. 56

    Atkinson, D. in Advances in Ecological Research Vol. 25 (eds Begon, M. & Fitter, A. H.) 1–58 (Academic Press, 1994).

    Google Scholar 

  57. 57

    van der Have, T. M. & de Jong, G. Adult size in ectotherms: Temperature effects on growth and differentiation. J. Theor. Biol. 183, 329–340 (1996).

    Article  Google Scholar 

  58. 58

    Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the Arctic Ocean freshens. Science 326, 539 (2009).

    CAS  Article  Google Scholar 

  59. 59

    Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23, 248–256 (2009).

    Article  Google Scholar 

  60. 60

    Wikelski, M. & Thom, C. Marine iguanas shrink to survive El Niño. Nature 403, 37–38 (2000).

    CAS  Article  Google Scholar 

  61. 61

    Blueweiss, L. et al. Relationships between body size and some life history parameters. Oecologia 37, 257–272 (1978).

    CAS  Article  Google Scholar 

  62. 62

    Watt, C., Mitchell, S. & Salewski, V. Bergmann's rule; a concept cluster? Oikos 119, 89–100 (2010).

    Article  Google Scholar 

  63. 63

    Blackburn, T. M. & Hawkins, B. A. Bergmann's rule and the mammal fauna of northern North America. Ecography 27, 715–724 (2004).

    Article  Google Scholar 

  64. 64

    Diniz-Filho, J. A., Bini, L. M., Rodriguez, M. A., Rangel, T. & Hawkins, B. A. Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora. Ecography 30, 598–608 (2007).

    Article  Google Scholar 

  65. 65

    Ramirez, L., Diniz, J. A. F. & Hawkins, B. A. Partitioning phylogenetic and adaptive components of the geographical body-size pattern of new world birds. Glob. Ecol. Biogeogr. 17, 100–110 (2008).

    Google Scholar 

  66. 66

    Heatwole, H., Torres, F., Deaustin, S. B. & Heatwole, A. Studies on anuran water balance — I. Dynamics of evaporative water loss by the coqui, Eleutherodactylus portoricensis. Comp. Biochem. Physiol. 28, 245–269 (1969).

    CAS  Article  Google Scholar 

  67. 67

    Gill, R. A., Anderson, L. J., Polley, H. W., Johnson, H. B. & Jackson, R. B. Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2 . Ecology 87, 41–52 (2006).

    Article  Google Scholar 

  68. 68

    Phillips, O. L. et al. Increasing dominance of large lianas in Amazonian forests. Nature 418, 770–774 (2002).

    CAS  Article  Google Scholar 

  69. 69

    ter Hofstede, R. & Rijnsdorp, A. D. Comparing demersal fish assemblages between periods of contrasting climate and fishing pressure. ICES J. Mar. Sci. 68, 1189–1198 (2011).

    Article  Google Scholar 

  70. 70

    Food and Agriculture Organization How to Feed the World in 2050 (United Nations, 2009); available via

  71. 71

    Thresher, R. E., Koslow, J. A., Morison, A. K. & Smith, D. C. Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish. Proc. Natl Acad. Sci. USA 104, 7461–7465 (2007).

    CAS  Article  Google Scholar 

  72. 72

    Todd, C. D. et al. Detrimental effects of recent ocean surface warming on growth condition of Atlantic salmon. Glob. Change Biol. 14, 958–970 (2008).

    Article  Google Scholar 

  73. 73

    Chamaille-Jammes, S., Massot, M., Aragon, P. & Clobert, J. Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob. Change Biol. 12, 392–402 (2006).

    Article  Google Scholar 

  74. 74

    Guillemain, M. et al. Wintering French mallard and teal are heavier and in better body condition than 30 years ago: Effects of a changing environment? Ambio 39, 170–180 (2010).

    Article  Google Scholar 

  75. 75

    Yom-Tov, Y. & Yom-Tov, S. Decrease in body size of Danish goshawks during the twentieth century. J. Ornithol. 147, 644–647 (2006).

    Article  Google Scholar 

  76. 76

    Salewski, V., Hochachka, W. M. & Fiedler, W. Global warming and Bergmann's rule: do central European passerines adjust their body size to rising temperatures? Oecologia 162, 247–260 (2010).

    Article  Google Scholar 

  77. 77

    Moreno-Rueda, G. & Rivas, J. M. Recent changes in allometric relationships among morphological traits in the dipper (Cinclus cinclus). J. Ornithol. 148, 489–494 (2007).

    Article  Google Scholar 

  78. 78

    Kanuscak, P., Hromada, M., Tryjanowski, P. & Sparks, T. Does climate at different scales influence the phenology and phenotype of the river warbler Locustella fluviatilis? Oecologia 141, 158–163 (2004).

    Article  Google Scholar 

  79. 79

    Proffitt, K. M., Garrott, R. A., Rotella, J. J., Siniff, D. B. & Testa, J. W. Exploring linkages between abiotic oceanographic processes and a top-trophic predator in an Antarctic ecosystem. Ecosystems 10, 119–126 (2007).

    Article  Google Scholar 

  80. 80

    Yom-Tov, Y., Yom-Tov, S. & Jarrell, G. Recent increase in body size of the American marten Martes americana in Alaska. Biol. J. Linn. Soc. 93, 701–707 (2008).

    Article  Google Scholar 

  81. 81

    Yom-Tov, Y. & Yom-Tov, J. Global warming, Bergmann's rule and body size in the masked shrew Sorex cinereus Kerr in Alaska. J. Anim. Ecol. 74, 803–808 (2005).

    Article  Google Scholar 

  82. 82

    Yom-Tov, Y. & Yom-Tov, S. Climatic change and body size in two species of Japanese rodents. Biol. J. Linn. Soc. 82, 263–267 (2004).

    Article  Google Scholar 

  83. 83

    Meiri, S., Guy, D., Dayan, T. & Simberloff, D. Global change and carnivore body size: data are stasis. Glob. Ecol. Biogeogr. 18, 240–247 (2009).

    Article  Google Scholar 

  84. 84

    Luque, S. P. & Ferguson, S. H. Ecosystem regime shifts have not affected growth and survivorship of eastern Beaufort Sea belugas. Oecologia 160, 367–378 (2009).

    Article  Google Scholar 

  85. 85

    Yom-Tov, Y., Heggberget, T. M., Wiig, O. & Yom-Tov, S. Body size changes among otters, Lutra lutra, in Norway: the possible effects of food availability and global warming. Oecologia 150, 155–160 (2006).

    Article  Google Scholar 

  86. 86

    Koontz, T. L., Shepherd, U. L. & Marshall, D. The effects of climate change on Merriam's kangaroo rat, Dipodomys merriami. J. Arid Environ. 49, 581–591 (2001).

    Article  Google Scholar 

  87. 87

    Yom-Tov, Y. et al. Recent changes in body size of the Eurasian otter Lutra lutra in Sweden. Ambio 39, 496–503 (2010).

    Article  Google Scholar 

  88. 88

    Stillwell, R. C. Are latitudinal clines in body size adaptive? Oikos 119, 1387–1390 (2010).

    Article  Google Scholar 

  89. 89

    Arft, A. M. et al. Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).

    Google Scholar 

  90. 90

    Yom-Tov, Y. Body sizes of carnivores commensal with humans have increased over the past 50 years. Funct. Ecol. 17, 323–327 (2003).

    Article  Google Scholar 

  91. 91

    Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. The cane toad's (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc. R. Soc. B. 274, 1413–1419 (2007).

    Article  Google Scholar 

Download references


We thank G. Blackham, A. Campos-Arceiz, R. Corlett, T. Foley, D. A. Friess, S. Howard, N. Karraker, D. Ng, J. Phelps, B. Pister, S. Poo, M. Posa, L. Qi, J. Rice, B. Scheffers, N. Sodhi, E. L. Webb and A. Wee for helpful comments and discussion on an earlier version of this manuscript. This work was supported by the Ministry of Education of Singapore grants R-154-000-434-112 and R-154-000-383-133.

Author information



Corresponding authors

Correspondence to Jennifer A. Sheridan or David Bickford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sheridan, J., Bickford, D. Shrinking body size as an ecological response to climate change. Nature Clim Change 1, 401–406 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing