Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods

Abstract

There have been decades, such as 2000–2009, when the observed globally averaged surface-temperature time series shows little increase or even a slightly negative trend1 (a hiatus period). However, the observed energy imbalance at the top-of-atmosphere for this recent decade indicates that a net energy flux into the climate system of about 1 W m−2 (refs 2, 3) should be producing warming somewhere in the system4,5. Here we analyse twenty-first-century climate-model simulations that maintain a consistent radiative imbalance at the top-of-atmosphere of about 1 W m−2 as observed for the past decade. Eight decades with a slightly negative global mean surface-temperature trend show that the ocean above 300 m takes up significantly less heat whereas the ocean below 300 m takes up significantly more, compared with non-hiatus decades. The model provides a plausible depiction of processes in the climate system causing the hiatus periods, and indicates that a hiatus period is a relatively common climate phenomenon and may be linked to La Niña-like conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Surface temperatures and ocean heat content.
Figure 2: Ocean circulation and subsurface temperature.

References

  1. 1

    Easterling, D. R. & Wehner, M. F. Is the climate warming or cooling? Geophys. Res. Lett. 36, L08706 (2009).

    Article  Google Scholar 

  2. 2

    Hansen, J. et al. Earth’s energy imbalance: Confirmation and implications. Science 308, 1431–1435 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–323 (2009).

    Article  Google Scholar 

  4. 4

    Trenberth, K. E. An imperative for climate change planning: Tracking Earth’s global energy. Curr. Opin. Environ. Sustain. 1, 19–27 (2009).

    Article  Google Scholar 

  5. 5

    Trenberth, K. E. & Fasullo, J. T. Tracking Earth’s energy. Science 328, 316–317 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009).

    Google Scholar 

  7. 7

    Lyman, J. M. et al. Robust warming of the global upper ocean. Nature 465, 334–337 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Santer, B. D. et al. Separating signal and noise in atmospheric temperature changes: The importance of timescale. J. Geophys. Res.http://dx.doi.org/10.1029/2011JD016263 (in the press).

  9. 9

    Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Solomon, S. et al. The persistently variable ‘background’ stratospheric aerosol layer and global climate change. Science 333, 866–870 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Kaufmann, R. K., Kauppib, H., Mann, M. L. & Stock, J. H. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl Acad. Sci. USA 108, 11790–11793 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Katsman, C. A. & van Oldenborgh, G. J. Tracing the upper ocean’s ‘missing heat’. Geophys. Res. Lett. 38, L14610 (2011).

    Google Scholar 

  13. 13

    Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Article  Google Scholar 

  14. 14

    Song, Y. T. & Colberg, R. Deep ocean warming assessed from altimeters, gravity recovery and climate experiment, in situ measurements, and a non-Boussinesq ocean general circulation model. J. Geophys. Res. 116, C02020 (2011).

    Google Scholar 

  15. 15

    Palmer, M. D., McNeall, D. J. & Dunstone, N. J. Importance of the deep ocean for estimating decadal changes in Earth’s radiation. Geophys. Res. Lett. 38, L13707 (2011).

    Article  Google Scholar 

  16. 16

    Gent, P. et al. The Community Climate System Model Version 4. J. Clim.http://dx.doi.org/10.1175/2011JCLI4083.1 (2011).

  17. 17

    Meehl, G. A. et al. Climate system response to external forcings and climate change projections in CCSM4. J. Clim. (in the press).

  18. 18

    Trenberth, K. E. & Fasullo, J. T. Global warming due to increasing absorbed solar radiation. Geophys. Res. Lett. 36, L07706 (2009).

    Article  Google Scholar 

  19. 19

    Roemmich, D. & Gilson, J. The global ocean imprint of ENSO. Geophys. Res. Lett. 38, L13606 (2011).

    Article  Google Scholar 

  20. 20

    Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Interdecadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).

    Article  Google Scholar 

  21. 21

    Meehl, G. A. & Hu, A. Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multi-decadal Pacific sea surface temperature anomalies. J. Clim. 19, 1605–1623 (2006).

    Article  Google Scholar 

  22. 22

    Trenberth, K. E. & Caron, J. M. The Southern Oscillation revisited: Sea level pressures, surface temperatures and precipitation. J. Clim. 13, 4358–4365 (2000).

    Article  Google Scholar 

  23. 23

    McPhaden, M. J. & Zhang, D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415, 603–608 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Kawano, T. et al. Bottom water warming along the pathway of lower circumpolar deep water in the Pacific Ocean. Geophys. Res. Lett. 33, L23613 (2006).

    Article  Google Scholar 

  25. 25

    Johnson, G. C. & Doney, S. C. Recent western South Atlantic bottom water warming. Geophys. Res. Lett. 33, L14614 (2006).

    Article  Google Scholar 

  26. 26

    Brady, E. C. & Otto-Bliesner, B. L. The role of meltwater-induced subsurface ocean warming in regulating the Atlantic meridional overturning in glacial climate simulations. Clim. Dyn.http://dx.doi.org/10.1007/s00382-010-0925-9 (2010).

  27. 27

    Church, J. A. et al. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. (in the press).

  28. 28

    McKee, D. C., Yuan, X., Gordon, A. L., Huber, B. A. & Dong, Z. Climate impact on interannual variability of Weddell Sea Bottom Water. J. Geophys. Res. 116, C05020 (2011).

    Article  Google Scholar 

  29. 29

    Moss, R. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Meehl, G. A. et al. How much more global warming and sea level rise? Science 307, 1769–1772 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. Tebaldi for her contributions to the statistical-significance calculations. Portions of this study were supported by the Office of Science (BER), US Department of Energy, Cooperative Agreement No DE-FC02-97ER62402, by the National Science Foundation and by NASA grant NNX09AH89G. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Author information

Affiliations

Authors

Contributions

G.A.M., J.M.A., J.T.F., A.H. and K.E.T. contributed to model data analysis. G.A.M., J.M.A., J.T.F., A.H. and K.E.T. contributed to writing the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Gerald A. Meehl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1317 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meehl, G., Arblaster, J., Fasullo, J. et al. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim Change 1, 360–364 (2011). https://doi.org/10.1038/nclimate1229

Download citation

Further reading