Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cryptic biodiversity loss linked to global climate change

Abstract

Global climate change (GCC) significantly affects distributional patterns of organisms1, and considerable impacts on biodiversity are predicted for the next decades. Inferred effects include large-scale range shifts towards higher altitudes and latitudes2, facilitation of biological invasions3 and species extinctions1,3. Alterations of biotic patterns caused by GCC have usually been predicted on the scale of taxonomically recognized morphospecies1. However, the effects of climate change at the most fundamental level of biodiversity—intraspecific genetic diversity—remain elusive4. Here we show that the use of morphospecies-based assessments of GCC effects will result in underestimations of the true scale of biodiversity loss. Species distribution modelling and assessments of mitochondrial DNA variability in nine montane aquatic insect species in Europe indicate that future range contractions will be accompanied by severe losses of cryptic evolutionary lineages and genetic diversity within these lineages. These losses greatly exceed those at the scale of morphospecies. We also document that the extent of range reduction may be a useful proxy when predicting losses of genetic diversity. Our results demonstrate that intraspecific patterns of genetic diversity should be considered when estimating the effects of climate change on biodiversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Projections of climatically suitable regions for three montane aquatic insect species representing different distribution types in Europe.
Figure 2: Predicted loss of mitochondrial cytochrome c oxidase subunit I haplotypes for nine montane aquatic insect species in Europe under two IPCC 2080 CO2 emission scenarios.
Figure 3: Losses of morphospecies, ESUs and mitochondrial DNA haplotypes combined for nine montane aquatic insect species in Europe under two IPCC 2080 CO2 emission scenarios.
Figure 4: Correlation between predicted losses of area and inferred losses of haplotypes.

Similar content being viewed by others

References

  1. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    Article  CAS  Google Scholar 

  2. Hill, J. K., Griffiths, H. M. & Thomas, C. D. Climate change and evolutionary adaptations at species’ range margins. Annu. Rev. Entomol. 56, 143–159 (2011).

    Article  CAS  Google Scholar 

  3. Sala, O. E. et al. Biodiversity—Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    Article  CAS  Google Scholar 

  4. Habel, J. C., Rodder, D., Schmitt, T. & Neve, G. Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob. Change Biol. 17, 194–205 (2011).

    Google Scholar 

  5. Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).

    Article  Google Scholar 

  6. Fraser, D. J. & Bernatchez, L. Adaptive evolutionary conservation: Towards a unified concept for defining conservation units. Mol. Ecol. 10, 2741–2752 (2001).

    Article  CAS  Google Scholar 

  7. Schmidt-Kloiber, A. & Hering, D. (eds) The Taxa and Autecology Database for Freshwater Organisms version 4.0 (2011); available at http://www.freshwaterecology.info.

  8. IPCC, Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) (Cambridge Univ. Press, 2001).

  9. Pauls, S. U., Lumbsch, H. T. & Haase, P. Phylogeography of the montane caddisfly Drusus discolor: Evidence for multiple refugia and periglacial survival. Mol. Ecol. 15, 2153–2169 (2006).

    Article  CAS  Google Scholar 

  10. Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, e11 (2007).

    Article  Google Scholar 

  11. Engelhardt, C. H. M., Haase, P. & Pauls, S. U. From the Western Alps across Central Europe: Postglacial recolonisation of the tufa stream specialist Rhyacophila pubescens (Insecta, Trichoptera). Front. Zool. 8, e10 (2011).

    Article  Google Scholar 

  12. Taubmann, J. et al. Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conserv. Genet. 12, 503–515 (2011).

    Article  Google Scholar 

  13. Hampe, A. R. & Petit, J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467 (2005).

    Article  Google Scholar 

  14. Scriber, J. M. Impacts of climate warming on hybrid zone movement: Geographically diffuse and biologically porous ‘species borders’. Insect Sci. 18, 121–129 (2011).

    Article  Google Scholar 

  15. Hickerson, M. J. et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291–301 (2010).

    Article  CAS  Google Scholar 

  16. Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl Acad. Sci. USA 101, 14812–14817 (2004).

    Article  CAS  Google Scholar 

  17. Franklin, J. Moving beyond static species distribution models in support of conservation biogeography. Divers. Distrib. 16, 321–330 (2010).

    Article  Google Scholar 

  18. Hughes, J. M. Constraints on recovery: Using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshwater Biol. 52, 616–631 (2007).

    Article  Google Scholar 

  19. Hughes, R. A., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).

    Article  Google Scholar 

  20. Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).

    Google Scholar 

  21. Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).

    Article  CAS  Google Scholar 

  22. Chown, S. L. et al. Adapting to climate change: A perspective from evolutionary physiology. Clim. Res. 43, 3–15 (2010).

    Article  Google Scholar 

  23. Lillehammer, A. Norwegian stoneflies. II. Distribution and relationship to the environment. Nor. Entomol. Tidsskr. 21, 195–200 (1974).

    Google Scholar 

  24. Vogler, A. P. & Monaghan, M. T. Recent advances in DNA taxonomy. J. Zool. Syst. Evol. Res. 45, 1–10 (2007).

    Article  Google Scholar 

  25. Zhou, X., Adamowicz, S., Jacobus, L., DeWalt, R. E. & Hebert, P. D. N. Towards a comprehensive barcode library for arctic life—Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada. Front. Zool. 6, e30 (2009).

    Article  Google Scholar 

  26. Monaghan, M. T. et al. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst. Biol. 58, 298–311 (2009).

    Article  CAS  Google Scholar 

  27. Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, e214 (2007).

    Article  Google Scholar 

  28. Ezard, T., Fujisawa, T. & Barraclough, T. Species delimitation by threshold statistics version 1. https://r-forge.r-project.org/projects/splits/ (2009).

  29. http://www.worldclim.org.

  30. Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Article  Google Scholar 

  31. Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Hughes (Griffith University), A. Mulch (BiK-F), M. Pfenninger (BiK-F) and K. Schwenk (University of Landau) for helpful comments. This study was financially supported by the research funding program LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz of Hesse’s Ministry of Higher Education, Research, and the Arts.

Author information

Authors and Affiliations

Authors

Contributions

M.B., C.N. and S.U.P. conceived the research. M.B., C.N. and S.U.P. conducted the research. S.D., C.H.M.E., P.H., S.L., J.S., K.T., M.B. and S.U.P. contributed new reagents/analytic tools. M.B. and S.D. analysed the data. M.B., C.N. and S.U.P. wrote the manuscript. C.N. and S.U.P. contributed equally to the study. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to S. U. Pauls or C. Nowak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3079 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bálint, M., Domisch, S., Engelhardt, C. et al. Cryptic biodiversity loss linked to global climate change. Nature Clim Change 1, 313–318 (2011). https://doi.org/10.1038/nclimate1191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing