Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Methane emissions from permafrost thaw lakes limited by lake drainage


Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane1,2,3,4,5. They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs 6, 7). Their expansion is enhanced by climate warming, which boosts methane emission and contributes a positive feedback to future climate change3,4,8. Modelling of thaw-lake growth is necessary to quantify this feedback. Here, we present a two-dimensional landscape-scale model that includes the entire life cycle of thaw lakes; initiation, expansion, drainage and eventual re-initiation. Application of our model to past and future lake expansion in northern Siberia shows that lake drainage strongly limits lake expansion, even under conditions of continuous permafrost. Our results suggest that methane emissions from thaw lakes in Siberia are an order of magnitude less alarming than previously suggested, although predicted lake expansion will still profoundly affect permafrost ecosystems and infrastructure.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of the thaw-lake cycle model.
Figure 2: Simulated thawed area data for the test area.
Figure 3: Ensemble of thaw-lake model runs for climate change expected in the twenty first century.


  1. Phelps, A. R., Peterson, K. M. & Jeffries, M. O. Methane efflux from high-latitude lakes during spring ice melt. J. Geophys. Res. 103, 29029–29036 (1998).

    Article  CAS  Google Scholar 

  2. Nakagawa, F., Yoshida, N., Nojiri, Y. & Makarov, V. N. Production of methane from alasses in eastern Siberia: Implications from its 14C and stable isotopic compositions. Glob. Biogeochem. Cycles 16, 1041 (2002).

    Article  Google Scholar 

  3. Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. III Methane bubbling from Siberian thaw lakes as positive feedback to climate warming. Nature 443, 71–75 (2006).

    Article  CAS  Google Scholar 

  4. Walter, K. M., Smith, L. C. & Chapin, F. S. III Methane bubbling from northern lakes: Present and future contributions to the global methane budget. Phil. Trans. R. Soc. A 365, 1657–1676 (2007).

    Article  Google Scholar 

  5. Takakai, F. et al. CH4 and N2O emissions from a forest-alas ecosystem in the permafrost Taiga forest region, eastern Siberia, Russia. J. Geophys. Res. 113, G02002 (2008).

    Article  Google Scholar 

  6. Hopkins, D. M. Thaw lakes and thaw sinks in the Imuruk Lake area, Seward Peninsula. J. Geol. 57, 119–131 (1949).

    Article  Google Scholar 

  7. Brouchkov, A., Fukuda, M., Fedorov, A., Konstantinov, P. & Iwahana, G. Thermokarst as a short-term permafrost disturbance, Central Yakutia. Permafr. Perigl. Processes 15, 81–87 (2004).

    Article  Google Scholar 

  8. ACIA, Arctic Climate Impact Assessment 1042 (Cambridge Univ. Press, 2005).

    Google Scholar 

  9. Walter, K. M., Edwards, M. E., Grosse, G., Zimov, S. A. & Chapin, F. S. III Thermokarst lakes as a source of atmospheric CH4 during the Last Deglaciation. Science 318, 633–636 (2007).

    Article  CAS  Google Scholar 

  10. Katamura, F. et al. Thermokarst formation and vegetation dynamics inferred from a palynological study in Central Yakutia, Eastern Siberia, Russia. Arctic Antarctic Alpine Res. 38, 561–570 (2006).

    Article  Google Scholar 

  11. Katamura, F., Fukuda, M., Bosikov, N. P. & Desyatkin, R. V. Charcoal records from thermokarst deposits in central Yakutia, eastern Siberia: Implications for forest re history and thermokarst development. Quat. Res. 71, 36–40 (2009).

    Article  Google Scholar 

  12. Ritchie, J. C., Cwynar, L. C. & Spear, R. W. Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature 305, 126–128 (1983).

    Article  Google Scholar 

  13. Hinkel, K. M. et al. Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska. Arctic Antarctic Alpine Res. 35, 291–300 (2003).

    Article  Google Scholar 

  14. Jorgenson, M. T. & Shur, Y. L. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. 112, F02S17 (2007).

    Article  Google Scholar 

  15. Smith, L. C., Sheng, Y., MacDonald, G. M. & Hinzman, L. D. Disappearing Arctic lakes. Science 308, 1429 (2005).

    Article  CAS  Google Scholar 

  16. Jorgenson, M. T., Racine, C. H., Walters, J. C. & Osterkamp, T. E. Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim. Change 48, 551–579 (2001).

    Article  CAS  Google Scholar 

  17. Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503 (2006).

    Article  Google Scholar 

  18. Van Huissteden, J. Tundra rivers of the last glacial: Sedimentation and geomorphological processes during the Middle Pleniglacial in the Dinkel valley (eastern Netherlands). Meded. Rijks Geol. Dienst 44, 3–138 (1990).

    Google Scholar 

  19. Bos, J. A. A., Bohncke, S. J. P., Kasse, C. & Vandenberghe, J. Vegetation and climate during the Weichselian Early Glacial and Pleniglacial in the Niederlausitz, eastern Germany — macrofossil and pollen evidence. J. Quat. Sci. 16, 269–289 (2001).

    Article  Google Scholar 

  20. Ling, F. & Zhang, T. Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain. J. Geophys. Res. 108, 4511 (2003).

    Article  Google Scholar 

  21. Pelletier, J. Formation of oriented thaw lakes by thaw slumping. J. Geophys. Res. 110, F02018 (2005).

    Article  Google Scholar 

  22. West, J. J. & Plug, L. J. Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J. Geophys. Res. 113, F01009 (2008).

    Google Scholar 

  23. Plug, L. J & West, J. J. Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement. J. Geophys. Res. 114, F01002 (2009).

    Article  Google Scholar 

  24. Van Huissteden, J., Maximov, T. C., Kononov, A. V. & Dolman, A. J. High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia). J. Geophys. Res. 110, G02002 (2005).

    Article  Google Scholar 

  25. Van der Molen, M. K. et al. The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4, 985–1003 (2007).

    Article  CAS  Google Scholar 

  26. Brown, J., Ferrians, O. J., Heginbottom, J. A. & Melnikov, E. S. Circum-arctic map of permafrost and ground ice conditions. National Snow and Ice Data Center/World Data Center for Glaciology. (Digital media, 2001).

  27. Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emission offset the continental carbon sink. Science 331, 50 (2011).

    Article  CAS  Google Scholar 

  28. Petrescu, A. M. R. et al. Modelling regional to hemispheric CH4 emissions of boreal, subarctic and arctic wetlands. Glob. Biogeochem. Cycles 24, GB4009 (2010).

    Article  Google Scholar 

Download references


We acknowledge G. van der Werf for critically reading a first version of the manuscript. We thank our colleagues at the RAS Institute for Biological Problems of the Cryolithozone in Yakutsk (A. V. Kononov, S. V. Karsanaev) for facilitating fieldwork in the Siberian North. This research is financed by Netherlands Organization for Scientific Research (NWO) Grant no. 815.01007 ‘Methane flux from northern wetlands at rapid climate change during the last glacial’ and NWO/Russian Federal Bureau of Research (RFBR) Dutch–Russian Scientific Cooperation Grant 047.017.037, and EU FP7 Marie Curie Research and Training Network GREENCYCLES II.

Author information

Authors and Affiliations



All authors contributed to the analysis of model results, proposed modifications to the experiments and commented on the manuscript. J.v.H. constructed the model and conducted most of the model experiments. C.B. contributed to the text and the system analysis preceding the model construction. C.B. and F.J.W.P. collected the field data. A.J.D. contributed to the text. Y.M. did experiments with the future climate scenarios. T.C.M. facilitated fieldwork in the Siberian North and contributed with discussions on scientific results. A.J.D.

Corresponding author

Correspondence to J. van Huissteden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3801 kb)

Supplementary information

Supplementary Movie S1 (AVI 172960 kb)

Supplementary information

Model source code (ZIP 138 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Huissteden, J., Berrittella, C., Parmentier, F. et al. Methane emissions from permafrost thaw lakes limited by lake drainage. Nature Clim Change 1, 119–123 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing