Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one?

Abstract

Members of the Fe(II)- and 2-oxoglutarate–dependent family of dioxygenases have long been known to oxidize several amino acids in various protein targets to facilitate protein folding. However, in recent years investigators have characterized several such hydroxylation modifications that serve a regulatory, rather than structural, purpose. Furthermore, the responsible enzymes seem to function directly as sensors of the cellular environment and metabolic state. For example, a cellular response pathway to low oxygen (hypoxia) is orchestrated through the actions of prolyl and asparaginyl hydroxylases that govern both the oxygen-dependent stability and transcriptional activity of the hypoxia-inducible transcription factor. Recently, a different subfamily of Fe(II)- and 2-oxoglutarate–dependent dioxygenases has been shown to carry out histone demethylation. The discovery of protein regulation via hydroxylation raises the possibility that other Fe(II)- and 2-oxoglutarate–dependent dioxygenases might also serve in a similar capacity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein hydroxylation by Fe(II)- and 2-oxoglutarate–dependent dioxygenases.
Figure 2: Regulation of the mammalian hypoxia response pathway.
Figure 3: HIF-α hydroxylation mediates interactions with pVHL and p300.
Figure 4: Structures of HIF prolyl (HPH-2/PHD2/EGLN1) and asparaginyl (FIH-1) hydroxylases.
Figure 5: Structure of the JmjC domain from the histone demethylase JHDM3A.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Clifton, I.J. et al. Structural studies on 2-oxoglutarate oxygenases and related double-stranded β-helix fold proteins. J. Inorg. Biochem. 100, 644–669 (2006).

    CAS  PubMed  Google Scholar 

  2. Koehntop, K.D., Emerson, J.P. & Que, L., Jr. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes. J. Biol. Inorg. Chem. 10, 87–93 (2005).

    CAS  PubMed  Google Scholar 

  3. Zhou, J., Gunsior, M., Bachmann, B.O., Townsend, C.A. & Solomon, E.I. Substrate binding to the α-ketoglutarate-dependent non-heme iron enzyme clavaminate synthase 2: coupling mechanism of oxidative decarboxylation and hydroxylation. J. Am. Chem. Soc. 120, 13539–13540 (1998).

    CAS  Google Scholar 

  4. Bernhardt, R. Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 124, 128–145 (2006).

    CAS  PubMed  Google Scholar 

  5. Wu, M., Moon, H.S., Begley, T.P., Myllyharju, J. & Kivirikko, K.I. Mechanism-based inactivation of the human prolyl-4-hydroxylase by 5-oxaproline-containing peptides: evidence for a prolyl radical intermediate. J. Am. Chem. Soc. 121, 587–588 (1999).

    CAS  Google Scholar 

  6. Burzlaff, N.I. et al. The reaction cycle of isopenicillin N synthase observed by X-ray diffraction. Nature 401, 721–724 (1999).

    CAS  PubMed  Google Scholar 

  7. Bugg, T.D.H. Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59, 7075–7101 (2003).

    CAS  Google Scholar 

  8. Hausinger, R.P. FeII/α-ketoglutarate-dependent hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 21–68 (2004).

    CAS  PubMed  Google Scholar 

  9. Price, J.C., Barr, E.W., Tirupati, B., Bollinger, J.M. & Krebs, C. The first direct characterization of a high-valent iron intermediate in the reaction of an α-ketoglutarate-dependent dioxygenase: a high-spin Fe(IV) complex in taurine/α-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry 42, 7497–7508 (2003).

    CAS  PubMed  Google Scholar 

  10. Hoffart, L.M., Barr, E.W., Guyer, R.B., Bollinger, J.M. & Krebs, C. Direct spectroscopic detection of a C-H-cleaving high-spin Fe(IV) complex in a prolyl-4-hydroxylase. Proc. Natl. Acad. Sci. USA 103, 14738–14743 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Myllyharju, J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol. 22, 15–24 (2003).

    CAS  PubMed  Google Scholar 

  12. Bhattacharjee, A. & Bansal, M. Collagen structure: the Madras triple helix and the current scenario. IUBMB Life 57, 161–172 (2005).

    CAS  PubMed  Google Scholar 

  13. Kivirikko, K.I. & Prockop, D.J. Enzymatic hydroxylation of proline and lysine in protocollagen. Proc. Natl. Acad. Sci. USA 57, 782–789 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. & Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858–861 (2002).

    CAS  PubMed  Google Scholar 

  15. Stenflo, J. et al. Hydroxylation of aspartic acid in domains homologous to the epidermal growth factor precursor is catalyzed by a 2-oxoglutarate-dependent dioxygenase. Proc. Natl. Acad. Sci. USA 86, 444–447 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, A. et al. Alternative reactivity of an α-ketoglutarate-dependent iron(II) oxygenase: enzyme self-hydroxylation. J. Am. Chem. Soc. 123, 5126–5127 (2001).

    CAS  PubMed  Google Scholar 

  17. Semenza, G.L. HIF-1 and human disease: one highly involved factor. Genes Dev. 14, 1983–1991 (2000).

    CAS  PubMed  Google Scholar 

  18. Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003).

    CAS  PubMed  Google Scholar 

  19. Wang, G.L., Jiang, B.H. & Semenza, G.L. Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun. 216, 669–675 (1995).

    CAS  PubMed  Google Scholar 

  20. Yang, J. et al. Functions of the Per/ARNT/Sim domains of the hypoxia-inducible factor. J. Biol. Chem. 280, 36047–36054 (2005).

    CAS  PubMed  Google Scholar 

  21. Huang, L.E., Arany, Z., Livingston, D.M. & Bunn, H.F. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit. J. Biol. Chem. 271, 32253–32259 (1996).

    CAS  PubMed  Google Scholar 

  22. Salceda, S. & Caro, J. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272, 22642–22647 (1997).

    CAS  PubMed  Google Scholar 

  23. Huang, L.E., Gu, J., Schau, M. & Bunn, H.F. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 95, 7987–7992 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kallio, P.J., Wilson, W.J., O'Brien, S., Makino, Y. & Poellinger, L. Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin-proteasome pathway. J. Biol. Chem. 274, 6519–6525 (1999).

    CAS  PubMed  Google Scholar 

  25. Jiang, B.H., Zheng, J.Z., Leung, S.W., Roe, R. & Semenza, G.L. Transactivation and inhibitory domains of hypoxia-inducible factor 1α. Modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 272, 19253–19260 (1997).

    CAS  PubMed  Google Scholar 

  26. Pugh, C.W., O'Rourke, J.F., Nagao, M., Gleadle, J.M. & Ratcliffe, P.J. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the α subunit. J. Biol. Chem. 272, 11205–11214 (1997).

    CAS  PubMed  Google Scholar 

  27. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    CAS  PubMed  Google Scholar 

  28. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    CAS  PubMed  Google Scholar 

  29. Yu, F., White, S.B., Zhao, Q. & Lee, F.S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl. Acad. Sci. USA 98, 9630–9635 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hon, W.C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 α by pVHL. Nature 417, 975–978 (2002).

    CAS  PubMed  Google Scholar 

  31. Min, J.H. et al. Structure of an HIF-1α -pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002).

    CAS  PubMed  Google Scholar 

  32. Bruick, R.K. & McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    CAS  PubMed  Google Scholar 

  33. Epstein, A.C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    CAS  PubMed  Google Scholar 

  34. Ivan, M. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA 99, 13459–13464 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hewitson, K.S. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351–26355 (2002).

    CAS  PubMed  Google Scholar 

  36. Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dann, C.E., III, Bruick, R.K. & Deisenhofer, J. Structure of factor-inhibiting hypoxia-inducible factor 1: an asparaginyl hydroxylase involved in the hypoxic response pathway. Proc. Natl. Acad. Sci. USA 99, 15351–15356 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Elkins, J.M. et al. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 α. J. Biol. Chem. 278, 1802–1806 (2003).

    CAS  PubMed  Google Scholar 

  39. Lee, C., Kim, S.J., Jeong, D.G., Lee, S.M. & Ryu, S.E. Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and von Hippel-Lindau. J. Biol. Chem. 278, 7558–7563 (2003).

    CAS  PubMed  Google Scholar 

  40. McDonough, M.A. et al. Cellular oxygen sensing: crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc. Natl. Acad. Sci. USA 103, 9814–9819 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang, J., Zhao, Q., Mooney, S.M. & Lee, F.S. Sequence determinants in hypoxia-inducible factor-1α for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J. Biol. Chem. 277, 39792–39800 (2002).

    CAS  PubMed  Google Scholar 

  42. Hirsila, M., Koivunen, P., Gunzler, V., Kivirikko, K.I. & Myllyharju, J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem. 278, 30772–30780 (2003).

    PubMed  Google Scholar 

  43. Koivunen, P., Hirsila, M., Kivirikko, K.I. & Myllyharju, J. The length of peptide substrates has a marked effect on hydroxylation by the HIF prolyl 4-hydroxylases. J. Biol. Chem. 281, 28712–28720 (2006).

    CAS  PubMed  Google Scholar 

  44. Sanchez-Puig, N., Veprintsev, D.B. & Fersht, A.R. Binding of natively unfolded HIF-1α ODD domain to p53. Mol. Cell 17, 11–21 (2005).

    CAS  PubMed  Google Scholar 

  45. Chan, D.A., Sutphin, P.D., Yen, S.E. & Giaccia, A.J. Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 α. Mol. Cell. Biol. 25, 6415–6426 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang, B.H., Semenza, G.L., Bauer, C. & Marti, H.H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271, C1172–C1180 (1996).

    CAS  PubMed  Google Scholar 

  47. Koivunen, P., Hirsila, M., Gunzler, V., Kivirikko, K.I. & Myllyharju, J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279, 9899–9904 (2004).

    CAS  PubMed  Google Scholar 

  48. Mahon, P.C., Hirota, K. & Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15, 2675–2686 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Linke, S. et al. Substrate requirements of the oxygen-sensing asparaginyl hydroxylase factor-inhibiting hypoxia-inducible factor. J. Biol. Chem. 279, 14391–14397 (2004).

    CAS  PubMed  Google Scholar 

  50. Dames, S.A., Martinez-Yamout, M., De Guzman, R.N., Dyson, H.J. & Wright, P.E. Structural basis for Hif-1 α /CBP recognition in the cellular hypoxic response. Proc. Natl. Acad. Sci. USA 99, 5271–5276 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Freedman, S.J. et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 α. Proc. Natl. Acad. Sci. USA 99, 5367–5372 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Myllyharju, J. & Kivirikko, K.I. Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. EMBO J. 16, 1173–1180 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Stolze, I.P. et al. Genetic analysis of the role of the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (HIF) in regulating HIF transcriptional target genes. J. Biol. Chem. 279, 42719–42725 (2004).

    CAS  PubMed  Google Scholar 

  54. Chandel, N.S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).

    CAS  PubMed  Google Scholar 

  55. Hagen, T., Taylor, C.T., Lam, F. & Moncada, S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science 302, 1975–1978 (2003).

    CAS  PubMed  Google Scholar 

  56. Doege, K., Heine, S., Jensen, I., Jelkmann, W. & Metzen, E. Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact. Blood 106, 2311–2317 (2005).

    CAS  PubMed  Google Scholar 

  57. Brunelle, J.K. et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 1, 409–414 (2005).

    CAS  PubMed  Google Scholar 

  58. Guzy, R.D. et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1, 401–408 (2005).

    CAS  PubMed  Google Scholar 

  59. Mansfield, K.D. et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell Metab. 1, 393–399 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gerald, D. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781–794 (2004).

    CAS  PubMed  Google Scholar 

  61. Knowles, H.J., Raval, R.R., Harris, A.L. & Ratcliffe, P.J. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res. 63, 1764–1768 (2003).

    CAS  PubMed  Google Scholar 

  62. Salnikow, K. et al. Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress. J. Biol. Chem. 279, 40337–40344 (2004).

    CAS  PubMed  Google Scholar 

  63. Lawson, J.W.R., Guynn, R.W., Cornell, N. & Veech, R.L. in Gluconeogenesis: Its Regulation in Mammalian Species (eds. Hanson, R.W. & Mehlman, M.A.) 165–220 (John Wiley and Sons, New York, 1976).

    Google Scholar 

  64. Metzen, E. et al. Intracellular localisation of human HIF-1 α hydroxylases: implications for oxygen sensing. J. Cell Sci. 116, 1319–1326 (2003).

    CAS  PubMed  Google Scholar 

  65. Soilleux, E.J. et al. Use of novel monoclonal antibodies to determine the expression and distribution of the hypoxia regulatory factors PHD-1, PHD-2, PHD-3 and FIH in normal and neoplastic human tissues. Histopathology 47, 602–610 (2005).

    CAS  PubMed  Google Scholar 

  66. Dalgard, C.L., Lu, H., Mohyeldin, A. & Verma, A. Endogenous 2-oxoacids differentially regulate expression of oxygen sensors. Biochem. J. 380, 419–424 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu, H. et al. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J. Biol. Chem. 280, 41928–41939 (2005).

    CAS  PubMed  Google Scholar 

  68. Selak, M.A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).

    CAS  PubMed  Google Scholar 

  69. Pollard, P.J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    CAS  PubMed  Google Scholar 

  70. Isaacs, J.S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    CAS  PubMed  Google Scholar 

  71. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  PubMed  Google Scholar 

  72. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    CAS  PubMed  Google Scholar 

  73. Bannister, A.J. & Kouzarides, T. Reversing histone methylation. Nature 436, 1103–1106 (2005).

    CAS  PubMed  Google Scholar 

  74. Bannister, A.J., Schneider, R. & Kouzarides, T. Histone methylation: dynamic or static? Cell 109, 801–806 (2002).

    CAS  PubMed  Google Scholar 

  75. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    CAS  PubMed  Google Scholar 

  76. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    CAS  PubMed  Google Scholar 

  77. Forneris, F., Binda, C., Vanoni, M.A., Mattevi, A. & Battaglioli, E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207 (2005).

    CAS  PubMed  Google Scholar 

  78. Falnes, P.O., Johansen, R.F. & Seeberg, E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419, 178–182 (2002).

    CAS  PubMed  Google Scholar 

  79. Trewick, S.C., McLaughlin, P.J. & Allshire, R.C. Methylation: lost in hydroxylation? EMBO Rep. 6, 315–320 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fodor, B.D. et al. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev. 20, 1557–1562 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Klose, R.J., Kallin, E.M. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet. 7, 715–727 (2006).

    CAS  PubMed  Google Scholar 

  82. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    CAS  PubMed  Google Scholar 

  83. Whetstine, J.R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481 (2006).

    CAS  PubMed  Google Scholar 

  84. Yamane, K. et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125, 483–495 (2006).

    CAS  PubMed  Google Scholar 

  85. Cloos, P.A. et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307–311 (2006).

    CAS  PubMed  Google Scholar 

  86. Chen, Z. et al. Structural insights into histone demethylation by JMJD2 family members. Cell 125, 691–702 (2006).

    CAS  PubMed  Google Scholar 

  87. Zhang, D., Yoon, H.G. & Wong, J. JMJD2A is a novel N-CoR-interacting protein and is involved in repression of the human transcription factor achaete scute-like homologue 2 (ASCL2/Hash2). Mol. Cell. Biol. 25, 6404–6414 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ozer, A., Wu, L.C. & Bruick, R.K. The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc. Natl. Acad. Sci. USA 102, 7481–7486 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Baek, J.H. et al. OS-9 interacts with hypoxia-inducible factor 1α and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1α. Mol. Cell 17, 503–512 (2005).

    CAS  PubMed  Google Scholar 

  90. Masson, N. et al. The HIF prolyl hydroxylase PHD3 is a potential substrate of the TRiC chaperonin. FEBS Lett. 570, 166–170 (2004).

    CAS  PubMed  Google Scholar 

  91. Choi, K.O. et al. Inhibition of the catalytic activity of hypoxia-inducible factor-1α-prolyl-hydroxylase 2 by a MYND-type zinc finger. Mol. Pharmacol. 68, 1803–1809 (2005).

    CAS  PubMed  Google Scholar 

  92. Nakayama, K. et al. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1α abundance, and modulates physiological responses to hypoxia. Cell 117, 941–952 (2004).

    CAS  PubMed  Google Scholar 

  93. Appelhoff, R.J. et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 279, 38458–38465 (2004).

    CAS  PubMed  Google Scholar 

  94. Stiehl, D.P. et al. Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J. Biol. Chem. 281, 23482–23491 (2006).

    CAS  PubMed  Google Scholar 

  95. Khanna, S., Roy, S., Maurer, M., Ratan, R.R. & Sen, C.K. Oxygen-sensitive reset of hypoxia-inducible factor transactivation response: prolyl hydroxylases tune the biological normoxic set point. Free Radic. Biol. Med. 40, 2147–2154 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Morita, M. et al. HLF/HIF-2α is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J. 22, 1134–1146 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Siddiq, A. et al. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J. Biol. Chem. 280, 41732–41743 (2005).

    CAS  PubMed  Google Scholar 

  98. Temes, E. et al. Activation of HIF-prolyl hydroxylases by R59949, an inhibitor of the diacylglycerol kinase. J. Biol. Chem. 280, 24238–24244 (2005).

    CAS  PubMed  Google Scholar 

  99. Yeo, E.J. et al. Amphotericin B blunts erythropoietin response to hypoxia by reinforcing FIH-mediated repression of HIF-1. Blood 107, 916–923 (2006).

    CAS  PubMed  Google Scholar 

  100. Takeda, K. et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor α levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol. 26, 8336–8346 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Percy, M.J. et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc. Natl. Acad. Sci. USA 103, 654–659 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kuznetsova, A.V. et al. von Hippel-Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc. Natl. Acad. Sci. USA 100, 2706–2711 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cummins, E.P. et al. Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc. Natl. Acad. Sci. USA 103, 18154–18159 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cockman, M.E. et al. Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl. Acad. Sci. USA 103, 14767–14772 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chuikov, S. et al. Regulation of p53 activity through lysine methylation. Nature 432, 353–360 (2004).

    CAS  PubMed  Google Scholar 

  106. Kouskouti, A., Scheer, E., Staub, A., Tora, L. & Talianidis, I. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol. Cell 14, 175–182 (2004).

    CAS  PubMed  Google Scholar 

  107. Polevoda, B., Martzen, M.R., Das, B., Phizicky, E.M. & Sherman, F. Cytochrome c methyltransferase, Ctm1p, of yeast. J. Biol. Chem. 275, 20508–20513 (2000).

    CAS  PubMed  Google Scholar 

  108. Inamitsu, M., Itoh, S., Hellman, U., Ten Dijke, P. & Kato, M. Methylation of Smad6 by protein arginine N-methyltransferase 1. FEBS Lett. 580, 6603–6611 (2006).

    CAS  PubMed  Google Scholar 

  109. El-Andaloussi, N. et al. Methylation of DNA polymerase β by protein arginine methyltransferase 1 regulates its binding to proliferating cell nuclear antigen. FASEB J. 21, 26–34 (2007).

    CAS  PubMed  Google Scholar 

  110. Cuthbert, G.L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004).

    CAS  PubMed  Google Scholar 

  111. van der Wel, H., Ercan, A. & West, C.M. The Skp1 prolyl hydroxylase from Dictyostelium is related to the hypoxia-inducible factor-α class of animal prolyl 4-hydroxylases. J. Biol. Chem. 280, 14645–14655 (2005).

    CAS  PubMed  Google Scholar 

  112. Elvidge, G.P. et al. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1α, HIF-2α, and other pathways. J. Biol. Chem. 281, 15215–15226 (2006).

    CAS  PubMed  Google Scholar 

  113. Kruszewski, M. The role of labile iron pool in cardiovascular diseases. Acta Biochim. Pol. 51, 471–480 (2004).

    CAS  PubMed  Google Scholar 

  114. Hanson, E.S., Rawlins, M.L. & Leibold, E.A. Oxygen and iron regulation of iron regulatory protein 2. J. Biol. Chem. 278, 40337–40342 (2003).

    CAS  PubMed  Google Scholar 

  115. Wang, J. et al. Iron-mediated degradation of IRP2, an unexpected pathway involving a 2-oxoglutarate-dependent oxygenase activity. Mol. Cell. Biol. 24, 954–965 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Rouault, T.A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2, 406–414 (2006).

    CAS  PubMed  Google Scholar 

  117. Myllyla, R., Tuderman, L. & Kivirikko, K.I. Mechanism of prolyl hydroxylase reaction. 2. Kinetic-analysis of reaction sequence. Eur. J. Biochem. 80, 349–357 (1977).

    CAS  PubMed  Google Scholar 

  118. Hirsila, M. et al. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J. 19, 1308–1310 (2005).

    CAS  PubMed  Google Scholar 

  119. McNeill, L.A. et al. Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity for ferrous iron and 2-oxoglutarate. Mol. Biosyst. 1, 321–324 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.K.B. is the Michael L. Rosenberg Scholar in Medical Research and is supported by awards from the Burroughs Wellcome Fund and the Welch Foundation. We thank J. Ready for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard K Bruick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozer, A., Bruick, R. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one?. Nat Chem Biol 3, 144–153 (2007). https://doi.org/10.1038/nchembio863

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio863

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing