TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli

Abstract

TRPM8, a member of the transient receptor potential (TRP) channel superfamily, is expressed in thermosensitive neurons, in which it functions as a cold and menthol sensor. TRPM8 and most other temperature-sensitive TRP channels (thermoTRPs) are voltage gated; temperature and ligands regulate channel opening by shifting the voltage dependence of activation. The mechanisms and structures underlying gating of thermoTRPs are currently poorly understood. Here we show that charge-neutralizing mutations in transmembrane segment 4 (S4) and the S4-S5 linker of human TRPM8 reduce the channel's gating charge, which indicates that this region is part of the voltage sensor. Mutagenesis-induced changes in voltage sensitivity translated into altered thermal sensitivity, thereby establishing the strict coupling between voltage and temperature sensing. Specific mutations in this region also affected menthol affinity, which indicates a direct interaction between menthol and the TRPM8 voltage sensor. Based on these findings, we present a Monod-Wyman-Changeux–type model explaining the combined effects of voltage, temperature and menthol on TRPM8 gating.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Charge neutralizations in S4 and the S4-S5 linker of TRPM8.
Figure 2: Determination of the total gating charge with the limited slope method.
Figure 3: Charge neutralizations in S4 and the S4-S5 linker alter the temperature dependence of TRPM8.
Figure 4: Residues in S4 and the S4-S5 linker determine the menthol sensitivity of TRPM8.
Figure 5: TRPM8-TRPM5 chimeras.
Figure 6: A quantitative model describing the combined effects of temperature, voltage and menthol on TRPM8.

References

  1. 1

    Julius, D. & Basbaum, A.I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Clapham, D.E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Patapoutian, A., Peier, A.M., Story, G.M. & Viswanath, V. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci. 4, 529–539 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Jordt, S.E., McKemy, D.D. & Julius, D. Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr. Opin. Neurobiol. 13, 487–492 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Voets, T., Talavera, K., Owsianik, G. & Nilius, B. Sensing with TRP channels. Nat. Chem. Biol. 1, 85–92 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Chung, M.K., Guler, A.D. & Caterina, M.J. Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J. Biol. Chem. 280, 15928–15941 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Nilius, B. et al. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J. 25, 467–478 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Xu, H., Blair, N.T. & Clapham, D.E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 25, 8924–8937 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Rohacs, T., Lopes, C.M., Michailidis, I. & Logothetis, D.E. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci. 8, 626–634 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Nilius, B. et al. Gating of TRP channels: a voltage connection? J. Physiol. (Lond.) 567, 35–44 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Peier, A.M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    CAS  Article  Google Scholar 

  15. 15

    McKemy, D.D., Neuhäusser, W.M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Montell, C. The TRP superfamily of cation channels. Sci. STKE 2005, re3 (2005).

    PubMed  Google Scholar 

  17. 17

    Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Bezanilla, F. Voltage-gated ion channels. IEEE Trans. Nanobioscience 4, 34–48 (2005).

    Article  Google Scholar 

  19. 19

    Aggarwal, S.K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Seoh, S.A., Sigg, D., Papazian, D.M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996).

    CAS  Article  Google Scholar 

  21. 21

    MacKinnon, R. Structural biology. Voltage sensor meets lipid membrane. Science 306, 1304–1305 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Long, S.B., Campbell, E.B. & MacKinnon, R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309, 903–908 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Long, S.B., Campbell, E.B. & MacKinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Brauchi, S., Orio, P. & Latorre, R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc. Natl. Acad. Sci. USA 101, 15494–15499 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Correa, A.M., Bezanilla, F. & Latorre, R. Gating kinetics of batrachotoxin-modified Na+ channels in the squid giant axon. Voltage and temperature effects. Biophys. J. 61, 1332–1352 (1992).

    CAS  Article  Google Scholar 

  26. 26

    Almers, W. Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 82, 96–190 (1978).

    CAS  Article  Google Scholar 

  27. 27

    Sigworth, F.J. Voltage gating of ion channels. Q. Rev. Biophys. 27, 1–40 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Wright, C.E., Bowen, W.P., Grattan, T.J. & Morice, A.H. Identification of the L-menthol binding site in guinea-pig lung membranes. Br. J. Pharmacol. 123, 481–486 (1998).

    CAS  Article  Google Scholar 

  29. 29

    Bandell, M. et al. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nat. Neurosci. 9, 493–500 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Togashi, K. et al. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J. 25, 1804–1815 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947 (1998).

    CAS  Article  Google Scholar 

  32. 32

    Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, USA, 2001).

    Google Scholar 

  33. 33

    Lee, H., Iida, T., Mizuno, A., Suzuki, M. & Caterina, M.J. Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J. Neurosci. 25, 1304–1310 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Schoppa, N.E., McCormack, K., Tanouye, M.A. & Sigworth, F.J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255, 1712–1715 (1992).

    CAS  Article  Google Scholar 

  36. 36

    Islas, L.D. & Sigworth, F.J. Voltage sensitivity and gating charge in Shaker and Shab family potassium channels. J. Gen. Physiol. 114, 723–742 (1999).

    CAS  Article  Google Scholar 

  37. 37

    Hirschberg, B., Rovner, A., Lieberman, M. & Patlak, J. Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J. Gen. Physiol. 106, 1053–1068 (1995).

    CAS  Article  Google Scholar 

  38. 38

    Noceti, F. et al. Effective gating charges per channel in voltage-dependent K+ and Ca2+ channels. J. Gen. Physiol. 108, 143–155 (1996).

    CAS  Article  Google Scholar 

  39. 39

    Nilius, B. et al. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem. 278, 30813–30820 (2003).

    CAS  Article  Google Scholar 

  40. 40

    Chuang, H.H., Neuhausser, W.M. & Julius, D. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43, 859–869 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Gavva, N.R. et al. Molecular determinants of vanilloid sensitivity in TRPV1. J. Biol. Chem. 279, 20283–20295 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Brauchi, S., Orta, G., Salazar, M., Rosenmann, E. & Latorre, R. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J. Neurosci. 26, 4835–4840 (2006).

    CAS  Article  Google Scholar 

  43. 43

    Rothberg, B.S. Allosteric modulation of ion channels: the case of maxi-K. Sci. STKE 2004, pe16 (2004).

    PubMed  Google Scholar 

  44. 44

    Robinson, R.B. & Siegelbaum, S.A. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu. Rev. Physiol. 65, 453–480 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Papazian, D.M. et al. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14, 1293–1301 (1995).

    CAS  Article  Google Scholar 

  46. 46

    Sasaki, M., Takagi, M. & Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 312, 589–592 (2006).

    CAS  Article  Google Scholar 

  47. 47

    Ramsey, I.S., Moran, M.M., Chong, J.A. & Clapham, D.E. A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 1213–1216 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    CAS  Article  Google Scholar 

  49. 49

    Vriens, J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl. Acad. Sci. USA 101, 396–401 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank G. Droogmans, F. Mahieu, J. Vriens, R. Vennekens and J. Prenen for helpful suggestions and criticisms, and A. Patapoutian and M. Bandell for the Y745H and L1009R mutants. This work was supported by grants from the Human Frontiers Science Program (RGP32/2004), the Belgian Federal Government (IUAP P5/05), the Research Foundation–Flanders (G.0136.00, G.0172.03 and G.0565.07) and the Research Council of the KU Leuven (GOA2004/07 and EF/95/010).

Author information

Affiliations

Authors

Contributions

T.V. designed, performed and analyzed the electrophysiological experiments. G.O. developed the radioligand binding assay and conducted the biochemical experiments and molecular modeling. A.J. designed and performed TRPM8 mutagenesis. T.V. and K.T. performed the mathematical modeling. T.V. wrote the manuscript; G.O., K.T. and B.N. edited the manuscript; and T.V. and B.N. supervised the project.

Corresponding author

Correspondence to Thomas Voets.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Examples of the method used to determine Popen. (PDF 131 kb)

Supplementary Fig. 2

Fits of two published models describing the temperature dependence of TRPM8 to experimental data. (PDF 119 kb)

Supplementary Fig. 3

[3H]menthol displacement experiments on nontransfected HEK 293 cells and on cells expressing TRPM2, WT TRPM8 and TRPM8 mutants. (PDF 83 kb)

Supplementary Fig. 4

Plasma membrane expression and current densities for different TRPM8-TRPM5 chimeras. (PDF 249 kb)

Supplementary Fig. 5

Additional predictions of the MWC model. (PDF 99 kb)

Supplementary Table 1

Parameters that describe the expression level, voltage dependence, temperature dependence and menthol sensitivity of WT and mutant TRPM8. (PDF 218 kb)

Supplementary Methods

Procedure for determination of activation curves, comparison of two models describing the temperature dependence of TRPM8, and mathematical description of the MWC and HH models. (PDF 264 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Voets, T., Owsianik, G., Janssens, A. et al. TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3, 174–182 (2007). https://doi.org/10.1038/nchembio862

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing