Imaging single events at the cell membrane

Abstract

The ability to sense and respond to the environment is a hallmark of living systems. These processes occur at the levels of the organism, cells and individual molecules. Sensing of extracellular changes could result in a structural or chemical alteration in a molecule, which could in turn trigger a cascade of intracellular signals or regulated trafficking of molecules at the cell surface. These and other such processes allow cells to sense and respond to environmental changes. Often, these changes and the responses to them are spatially and/or temporally localized, and visualization of such events necessitates the use of high-resolution imaging approaches. Here we discuss optical imaging approaches and tools for imaging individual events at the cell surface with improved speed and resolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Resolution of various optical imaging approaches.
Figure 2: Comparison of wide-field and TIRF imaging.
Figure 3: Use of TIRFM to study behavior of individual vesicles near the cell membrane.
Figure 4: Myosin V processive run with heads labeled with QDs of different colors.

References

  1. 1

    Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    CAS  Article  Google Scholar 

  2. 2

    Sakmann, B. & Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu. Rev. Physiol. 46, 455–472 (1984).

    CAS  Article  Google Scholar 

  3. 3

    Sakmann, B. Elementary steps in synaptic transmission revealed by currents through single ion channels. Science 256, 503–512 (1992).

    CAS  Article  Google Scholar 

  4. 4

    Angleson, J.K. & Betz, W.J. Monitoring secretion in real time: capacitance, amperometry and fluorescence compared. Trends Neurosci. 20, 281–287 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Mosharov, E.V. & Sulzer, D. Analysis of exocytotic events recorded by amperometry. Nat. Methods 2, 651–658 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Ruta, V., Chen, J. & MacKinnon, R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123, 463–475 (2005).

    CAS  Article  Google Scholar 

  7. 7

    White, S.H., Ladokhin, A.S., Jayasinghe, S. & Hristova, K. How membranes shape protein structure. J. Biol. Chem. 276, 32395–32398 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Gandhavadi, M., Allende, D., Vidal, A., Simon, S.A. & McIntosh, T.J. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys. J. 82, 1469–1482 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Sekar, R.B. & Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629–633 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Rust, M., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    CAS  Article  Google Scholar 

  12. 12

    Takahashi, N., Kishimoto, T., Nemoto, T., Kadowaki, T. & Kasai, H. Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 297, 1349–1352 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Webb, W.W. Applications of fluorescence correlation spectroscopy. Q. Rev. Biophys. 9, 49–68 (1976).

    CAS  Article  Google Scholar 

  14. 14

    Fahey, P.F. et al. Lateral diffusion in planar lipid bilayers. Science 195, 305–306 (1977).

    CAS  Article  Google Scholar 

  15. 15

    Schwille, P., Korlach, J. & Webb, W.W. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36, 176–182 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 141–145 (1981).

    CAS  Article  Google Scholar 

  18. 18

    Axelrod, D., Burghardt, T.P. & Thompson, N.L. Total internal reflection fluorescence. Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).

    CAS  Article  Google Scholar 

  19. 19

    Kawano, Y. et al. High-numerical-aperture objective lenses and optical system improved objective type total internal reflection fluorescence microscopy. Proc. SPIE 4098, 142–151 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Axelrod, D. Selective imaging of surface fluorescence with very high aperture microscope objectives. J. Biomed. Opt. 6, 6–13 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Schneckenburger, H. Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr. Opin. Biotechnol. 16, 13–18 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R. & Hell, S.W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Sieber, J.J., Willig, K.I., Heintzmann, R., Hell, S.W. & Lang, T. The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys. J. 90, 2843–2851 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Griesbeck, O. Fluorescent proteins as sensors for cellular functions. Curr. Opin. Neurobiol. 14, 636–641 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Lippincott-Schwartz, J. & Smith, C.L. Insights into secretory and endocytic membrane traffic using green fluorescent protein chimeras. Curr. Opin. Neurobiol. 7, 631–639 (1997).

    CAS  Article  Google Scholar 

  30. 30

    Lukyanov, K.A., Chudakov, D.M., Lukyanov, S. & Verkhusha, V.V. Innovation: photoactivatable fluorescent proteins. Nat. Rev. Mol. Cell Biol. 6, 885–891 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Lippincott-Schwartz, J., Altan-Bonnet, N. & Patterson, G.H. Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. Suppl, S7–S14 (2003).

  32. 32

    Chudakov, D.M. & Lukyanov, K.A. Use of green fluorescent protein (GFP) and its homologs for in vivo protein motility studies. Biochemistry (Mosc.) 68, 952–957 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S.W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Betzig, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Jaiswal, J.K., Goldman, E.R., Mattoussi, H. & Simon, S.M. Use of quantum dots for live cell imaging. Nat. Methods 1, 73–78 (2004).

    Article  Google Scholar 

  36. 36

    Jaiswal, J.K. & Simon, S.M. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 14, 497–504 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Gao, X. et al. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63–72 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  Article  Google Scholar 

  39. 39

    Uyeda, H.T., Medintz, I.L., Jaiswal, J.K., Simon, S.M. & Mattoussi, H. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 127, 3870–3878 (2005).

    CAS  Article  Google Scholar 

  40. 40

    An, S. & Zenisek, D. Regulation of exocytosis in neurons and neuroendocrine cells. Curr. Opin. Neurobiol. 14, 522–530 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Palfrey, H.C. & Artalejo, C.R. Secretion: kiss and run caught on film. Curr. Biol. 13, R397–R399 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Jaiswal, J.K., Chakrabarti, S., Andrews, N.W. & Simon, S.M. Synaptotagmin VII restricts fusion pore expansion during lysosomal exocytosis. PLoS Biol. 2, E233 (2004).

    Article  Google Scholar 

  43. 43

    Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Lampson, M.A., Schmoranzer, J., Zeigerer, A., Simon, S.M. & McGraw, T.E. Insulin-regulated release from the endosomal recycling compartment is regulated by budding of specialized vesicles. Mol. Biol. Cell 12, 3489–3501 (2001).

    CAS  Article  Google Scholar 

  45. 45

    Oheim, M., Loerke, D., Stuhmer, W. & Chow, R.H. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur. Biophys. J. 27, 83–98 (1998).

    CAS  Article  Google Scholar 

  46. 46

    Steyer, J.A., Horstmann, H. & Almers, W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388, 474–478 (1997).

    CAS  Article  Google Scholar 

  47. 47

    Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat. Cell Biol. 5, 126–136 (2003).

    CAS  Article  Google Scholar 

  48. 48

    Ma, L. et al. Direct imaging shows that insulin granule exocytosis occurs by complete vesicle fusion. Proc. Natl. Acad. Sci. USA 101, 9266–9271 (2004).

    CAS  Article  Google Scholar 

  49. 49

    Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    CAS  Article  Google Scholar 

  50. 50

    Ohara-Imaizumi, M. et al. Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy. Biochem. J. 363, 73–80 (2002).

    CAS  Article  Google Scholar 

  51. 51

    O'Connell, K.M. & Tamkun, M.M. Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. J. Cell Sci. 118, 2155–2166 (2005).

    CAS  Article  Google Scholar 

  52. 52

    Massol, R.H., Larsen, J.E. & Kirchhausen, T. Possible role of deep tubular invaginations of the plasma membrane in MHC-I trafficking. Exp. Cell Res. 306, 142–149 (2005).

    CAS  Article  Google Scholar 

  53. 53

    Lidke, D.S., Lidke, K.A., Rieger, B., Jovin, T.M. & Arndt-Jovin, D.J. Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell Biol. 170, 619–626 (2005).

    CAS  Article  Google Scholar 

  54. 54

    Warshaw, D.M. et al. Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J. 88, L30–L32 (2005).

    CAS  Article  Google Scholar 

  55. 55

    Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003).

    CAS  Article  Google Scholar 

  56. 56

    Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G. & Dahan, M. Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett. 6, 1491–1495 (2006).

    CAS  Article  Google Scholar 

  57. 57

    Pramanik, A. & Rigler, R. Ligand-receptor interactions in the membrane of cultured cells monitored by fluorescence correlation spectroscopy. Biol. Chem. 382, 371–378 (2001).

    CAS  Article  Google Scholar 

  58. 58

    Lieto, A.M., Cush, R.C. & Thompson, N.L. Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 85, 3294–3302 (2003).

    CAS  Article  Google Scholar 

  59. 59

    Bacia, K., Scherfeld, D., Kahya, N. & Schwille, P. Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys. J. 87, 1034–1043 (2004).

    CAS  Article  Google Scholar 

  60. 60

    Ohsugi, Y., Saito, K., Tamura, M. & Kinjo, M. Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy. Biophys. J. 91, 3456–3464 (2006).

    CAS  Article  Google Scholar 

  61. 61

    Gustafsson, M.G. Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9, 627–634 (1999).

    CAS  Article  Google Scholar 

  62. 62

    Jaiswal, J.K., Andrews, N.W. & Simon, S.M. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol. 159, 625–635 (2002).

    CAS  Article  Google Scholar 

  63. 63

    Schmoranzer, J., Goulian, M., Axelrod, D. & Simon, S.M. Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J. Cell Biol. 149, 23–32 (2000).

    CAS  Article  Google Scholar 

  64. 64

    Johns, L.M., Levitan, E.S., Shelden, E.A., Holz, R.W. & Axelrod, D. Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J. Cell Biol. 153, 177–190 (2001).

    CAS  Article  Google Scholar 

  65. 65

    Allersma, M.W., Bittner, M.A., Axelrod, D. & Holz, R.W. Motion matters: secretory granule motion adjacent to the plasma membrane and exocytosis. Mol. Biol. Cell 17, 2424–2438 (2006).

    CAS  Article  Google Scholar 

  66. 66

    Rappoport, J.Z., Taha, B.W. & Simon, S.M. Movement of plasma-membrane-associated clathrin spots along the microtubule cytoskeleton. Traffic 4, 460–467 (2003).

    CAS  Article  Google Scholar 

  67. 67

    Merrifield, C.J., Feldman, M.E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4, 691–698 (2002).

    CAS  Article  Google Scholar 

  68. 68

    Merrifield, C.J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005).

    CAS  Article  Google Scholar 

  69. 69

    Rappoport, J.Z., Benmerah, A. & Simon, S.M. Analysis of the AP-2 adaptor complex and cargo during clathrin-mediated endocytosis. Traffic 6, 539–547 (2005).

    CAS  Article  Google Scholar 

  70. 70

    Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 102, 9511–9516 (2005).

    CAS  Article  Google Scholar 

  71. 71

    Sosa, H., Peterman, E.J., Moerner, W.E. & Goldstein, L.S. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat. Struct. Biol. 8, 540–544 (2001).

    CAS  Article  Google Scholar 

  72. 72

    Basche, T., Moerner, W.E., Orrit, M. & Talon, H. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is supported by grants from the National Science Foundation (NSF FEB 00520813) and the National Institutes of Health (P20 GM072015 and GM072015 to S.M.S.). We thank P. Coffino for helpful comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanford M Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jaiswal, J., Simon, S. Imaging single events at the cell membrane. Nat Chem Biol 3, 92–98 (2007). https://doi.org/10.1038/nchembio855

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing