Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Natural expansion of the genetic code

Abstract

At the time of its discovery four decades ago, the genetic code was viewed as the result of a “frozen accident.” Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and aminoacyl-tRNA synthetase diversity in the evolution of the genetic code. The diverse assortment of codon reassignments present in subcellular organelles and organisms of distinct lineages has 'thawed' the concept of a universal immutable code; it may not be accidental that out of more than 140 amino acids found in natural proteins, only two (selenocysteine and pyrrolysine) are known to have been added to the standard 20-member amino acid alphabet. The existence of phosphoseryl-tRNA (in the form of tRNACys and tRNASec) may presage the discovery of other cotranslationally inserted modified amino acids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Summary of genetic code changes.

References

  1. 1

    Ibba, M. & Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650 (2000).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Ibba, M. & Söll, D. Aminoacyl-tRNAs: setting the limits of the genetic code. Genes Dev. 18, 731–738 (2004).

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Uy, R. & Wold, F. Posttranslational covalent modification of proteins. Science 198, 890–896 (1977).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Furter, R. Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Sci. 7, 419–426 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Wang, L., Xie, J. & Schultz, P.G. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006).

    PubMed  Article  CAS  Google Scholar 

  6. 6

    Köhrer, C. & RajBhandary, U.L. in The Aminoacyl-tRNA Synthetases (eds. Ibba, M., Francklyn, C.S. & Cusack, S.) 353–363 (Landes Bioscience, Georgetown, Texas, USA, 2005).

    Google Scholar 

  7. 7

    Crick, F.H.C. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Woese, C.R. On the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 54, 1546–1552 (1965).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Osawa, S., Jukes, T.H., Watanabe, K. & Muto, A. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56, 229–264 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Knight, R.D., Freeland, S.J. & Landweber, L.F. Rewiring the keyboard: evolvability of the genetic code. Nat. Rev. Genet. 2, 49–58 (2001).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Santos, M.A., Moura, G., Massey, S.E. & Tuite, M.F. Driving change: the evolution of alternative genetic codes. Trends Genet. 20, 95–102 (2004).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Miranda, I., Silva, R. & Santos, M.A. Evolution of the genetic code in yeasts. Yeast 23, 203–213 (2006).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Crick, F.H.C. Codon–anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 (1966).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Söll, D. et al. Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique. J. Mol. Biol. 19, 556–573 (1966).

    PubMed  Article  Google Scholar 

  15. 15

    Kisselev, L., Ehrenberg, M. & Frolova, L. Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J. 22, 175–182 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Eggertsson, G. & Söll, D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiol. Rev. 52, 354–374 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Söll, D. Genetic code: enter a new amino acid. Nature 331, 662–663 (1988).

    PubMed  Article  Google Scholar 

  18. 18

    Schön, A., Böck, A., Ott, G., Sprinzl, M. & Söll, D. The selenocysteine-inserting opal suppressor serine tRNA from E. coli is highly unusual in structure and modification. Nucleic Acids Res. 17, 7159–7165 (1989).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Böck, A., Thanbichler, M., Rother, M. & Resch, A. in The Aminoacyl-tRNA Synthetases (eds. Ibba, M., Francklyn, C.S. & Cusack, S.) 320–327 (Landes Bioscience, Georgetown, Texas, USA, 2005).

    Google Scholar 

  20. 20

    Hao, B. et al. A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296, 1462–1466 (2002).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Srinivasan, G., James, C.M. & Krzycki, J.A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459–1462 (2002).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Polycarpo, C. et al. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc. Natl. Acad. Sci. USA 101, 12450–12454 (2004).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Blight, S.K. et al. Direct charging of tRNACUA with pyrrolysine in vitro and in vivo. Nature 431, 333–335 (2004).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Heckman, J.E., Sarnoff, J., Alzner-DeWeerd, B., Yin, S. & RajBhandary, U.L. Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc. Natl. Acad. Sci. USA 77, 3159–3163 (1980).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Yarus, M. Translational efficiency of transfer RNA's: uses of an extended anticodon. Science 218, 646–652 (1982).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Agris, P.F. Decoding the genome: a modified view. Nucleic Acids Res. 32, 223–238 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Tomita, K., Ueda, T. & Watanabe, K. 7-Methylguanosine at the anticodon wobble position of squid mitochondrial tRNASer GCU: molecular basis for assignment of AGA/AGG codons as serine in invertebrate mitochondria. Biochim. Biophys. Acta 1399, 78–82 (1998).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Tomita, K., Ueda, T. & Watanabe, K. The presence of pseudouridine in the anticodon alters the genetic code: a possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria. Nucleic Acids Res. 27, 1683–1689 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Suzuki, T., Ueda, T. & Watanabe, K. The 'polysemous' codon–a codon with multiple amino acid assignment caused by dual specificity of tRNA identity. EMBO J. 16, 1122–1134 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Min, B. et al. Protein synthesis in Escherichia coli with mischarged tRNA. J. Bacteriol. 185, 3524–3526 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Mehl, R.A. et al. Generation of a bacterium with a 21 amino acid genetic code. J. Am. Chem. Soc. 125, 935–939 (2003).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Vetsigian, K., Woese, C. & Goldenfeld, N. Collective evolution and the genetic code. Proc. Natl. Acad. Sci. USA 103, 10696–10701 (2006).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Rayman, M.P. The importance of selenium to human health. Lancet 356, 233–241 (2000).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Cone, J.E., Del Rio, R.M., Davis, J.N. & Stadtman, T.C. Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. USA 73, 2659–2663 (1976).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Fu, L.H. et al. A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase. J. Biol. Chem. 277, 25983–25991 (2002).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Obata, T. & Shiraiwa, Y. A novel eukaryotic selenoprotein in the haptophyte alga Emiliania huxleyi. J. Biol. Chem. 280, 18462–18468 (2005).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Hatfield, D., Choi, I.S., Mischke, S. & Owens, L.D. Selenocysteyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus. Biochem. Biophys. Res. Commun. 184, 254–259 (1992).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Kryukov, G.V. et al. Characterization of mammalian selenoproteomes. Science 300, 1439–1443 (2003).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Kryukov, G.V. & Gladyshev, V.N. The prokaryotic selenoproteome. EMBO Rep. 5, 538–543 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Johansson, L., Gafvelin, G. & Arner, E.S. Selenocysteine in proteins-properties and biotechnological use. Biochim. Biophys. Acta 1726, 1–13 (2005).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Zhang, Y., Romero, H., Salinas, G. & Gladyshev, V.N. Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox-active cysteine residues. Genome Biol. 7, R94 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42

    Baron, C., Heider, J. & Böck, A. Mutagenesis of selC, the gene for the selenocysteine-inserting tRNA-species in E. coli: effects on in vivo function. Nucleic Acids Res. 18, 6761–6766 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Forchhammer, K., Boesmiller, K. & Böck, A. The function of selenocysteine synthase and SELB in the synthesis and incorporation of selenocysteine. Biochimie 73, 1481–1486 (1991).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Tormay, P. et al. Bacterial selenocysteine synthase–structural and functional properties. Eur. J. Biochem. 254, 655–661 (1998).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Leinfelder, W., Stadtman, T.C. & Böck, A. Occurrence in vivo of selenocysteyl-tRNASerUCA in Escherichia coli. Effect of sel mutations. J. Biol. Chem. 264, 9720–9723 (1989).

    CAS  PubMed  Google Scholar 

  46. 46

    Forster, C., Ott, G., Forchhammer, K. & Sprinzl, M. Interaction of a selenocysteine-incorporating tRNA with elongation factor Tu from E. coli. Nucleic Acids Res. 18, 487–491 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Forchhammer, K., Leinfelder, W. & Böck, A. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342, 453–456 (1989).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Wu, X.Q. & Gross, H.J. The long extra arms of human tRNA(Ser)Sec and tRNASer function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner. Nucleic Acids Res. 21, 5589–5594 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Sturchler-Pierrat, C. et al. Selenocysteylation in eukaryotes necessitates the uniquely long aminoacyl acceptor stem of selenocysteine tRNASec. J. Biol. Chem. 270, 18570–18574 (1995).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Ohama, T., Yang, D.C. & Hatfield, D.L. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm. Arch. Biochem. Biophys. 315, 293–301 (1994).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Geslain, R. et al. Trypanosoma seryl-tRNA synthetase is a metazoan-like enzyme with high affinity for tRNASec. J. Biol. Chem., published online 13 October 2006 (doi:10.1074/jbc.M607862200).

  52. 52

    Kaiser, J.T. et al. Structural and functional investigation of a putative archaeal selenocysteine synthase. Biochemistry 44, 13315–13327 (2005).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Rother, M., Wilting, R., Commans, S. & Böck, A. Identification and characterization of the selenocysteine-specific translation factor SelB from the archaeon Methanococcus jannaschii. J. Mol. Biol. 299, 351–358 (2000).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Bilokapic, S., Korencic, D., Söll, D. & Weygand-Durasevic, I. The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. Eur. J. Biochem. 271, 694–702 (2004).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Allmang, C. & Krol, A. Selenoprotein synthesis: UGA does not end the story. Biochimie 88, 1561–1571 (2006).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Carlson, B.A. et al. Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. Proc. Natl. Acad. Sci. USA 101, 12848–12853 (2004).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Mäenpää, P.H. & Bernfield, M.R. A specific hepatic transfer RNA for phosphoserine. Proc. Natl. Acad. Sci. USA 67, 688–695 (1970).

    PubMed  Article  Google Scholar 

  58. 58

    Sharp, S.J. & Stewart, T.S. The characterization of phosphoseryl tRNA from lactating bovine mammary gland. Nucleic Acids Res. 4, 2123–2136 (1977).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Sauerwald, A. et al. RNA-dependent cysteine biosynthesis in archaea. Science 307, 1969–1972 (2005).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Gelpi, C., Sontheimer, E.J. & Rodriguez-Sanchez, J.L. Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Proc. Natl. Acad. Sci. USA 89, 9739–9743 (1992).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Kernebeck, T., Lohse, A.W. & Grötzinger, J. A bioinformatical approach suggests the function of the autoimmune hepatitis target antigen soluble liver antigen/liver pancreas. Hepatology 34, 230–233 (2001).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Yuan, J. et al. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc. Natl. Acad. Sci. USA 103, 18923–18927 (2006).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Small-Howard, A. et al. Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol. Cell. Biol. 26, 2337–2346 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Guimaraes, M.J. et al. Identification of a novel selD homolog from eukaryotes, bacteria, and archaea: is there an autoregulatory mechanism in selenocysteine metabolism? Proc. Natl. Acad. Sci. USA 93, 15086–15091 (1996).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Boone, D.R., Whitman, W.B. & Rouvière, P. in Methanogenesis (ed. Ferry, J.G.) 35–80 (Chapman & Hall, New York, 1993).

    Book  Google Scholar 

  66. 66

    Krzycki, J.A. Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases. Curr. Opin. Chem. Biol. 8, 484–491 (2004).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Hao, B. et al. Reactivity and chemical synthesis of L-pyrrolysine- the 22nd genetically encoded amino acid. Chem. Biol. 11, 1317–1324 (2004).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Soares, J.A. et al. The residue mass of L-pyrrolysine in three distinct methylamine methyltransferases. J. Biol. Chem. 280, 36962–36969 (2005).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Polycarpo, C. et al. Activation of the pyrrolysine suppressor tRNA requires formation of a ternary complex with class I and class II lysyl-tRNA synthetases. Mol. Cell 12, 287–294 (2003).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Zhang, Y., Baranov, P.V., Atkins, J.F. & Gladyshev, V.N. Pyrrolysine and selenocysteine use dissimilar decoding strategies. J. Biol. Chem. 280, 20740–20751 (2005).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Fu, S.L. & Dean, R.T. Structural characterization of the products of hydroxyl-radical damage to leucine and their detection on proteins. Biochem. J. 324, 41–48 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Zhang, M. et al. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors. Biochemistry 43, 12539–12548 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Théobald-Dietrich, A., Frugier, M., Giegé, R. & Rudinger-Thirion, J. Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA. Nucleic Acids Res. 32, 1091–1096 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74

    Namy, O., Rousset, J.P., Napthine, S. & Brierley, I. Reprogrammed genetic decoding in cellular gene expression. Mol. Cell 13, 157–168 (2004).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Théobald-Dietrich, A., Giegé, R. & Rudinger-Thirion, J. Evidence for the existence in mRNAs of a hairpin element responsible for ribosome dependent pyrrolysine insertion into proteins. Biochimie 87, 813–817 (2005).

    PubMed  Article  CAS  Google Scholar 

  76. 76

    Polycarpo, C.R. et al. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS Lett., published online 20 November 2006 (doi:10.1016/j.febslet.2006.11.028).

  77. 77

    Li, T. et al. Cysteinyl-tRNA formation: the last puzzle of aminoacyl-tRNA synthesis. FEBS Lett. 462, 302–306 (1999).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Stathopoulos, C. et al. Cysteinyl-tRNA synthetase is not essential for viability of the archaeon Methanococcus maripaludis. Proc. Natl. Acad. Sci. USA 98, 14292–14297 (2001).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Hohn, M.J., Park, H.-S., O'Donoghue, P., Schnitzbauer, M. & Söll, D. Emergence of the universal genetic code imprinted in an RNA record. Proc. Natl. Acad. Sci. USA 103, 18095–18100 (2006).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Ibba, M., Bono, J.L., Rosa, P.A. & Söll, D. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 94, 14383–14388 (1997).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Korencic, D., Polycarpo, C., Weygand-Durasevic, I. & Söll, D. Differential modes of transfer RNASer recognition in Methanosarcina barkeri. J. Biol. Chem. 279, 48780–48786 (2004).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Mazauric, M.H. et al. Glycyl-tRNA synthetase from Thermus thermophilus—wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems. Eur. J. Biochem. 251, 744–757 (1998).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Mazauric, M.H., Roy, H. & Kern, D. tRNA glycylation system from Thermus thermophilus. tRNAGly identity and functional interrelation with the glycylation systems from other phylae. Biochemistry 38, 13094–13105 (1999).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Murphy, F.V. IV, Ramakrishnan, V., Malkiewicz, A. & Agris, P.F. The role of modifications in codon discrimination by tRNALys UUU . Nat. Struct. Mol. Biol. 11, 1186–1191 (2004).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Agris for critical comments on the paper. S.P. holds a fellowship of the Yale University School of Medicine MD/PhD Program. Work in the authors' laboratory was supported by grants from the US National Institute of General Medical Sciences (GM22854), the US Department of Energy (DE-FG02-98ER20311) and the US National Science Foundation (DBI-0535566).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dieter Söll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ambrogelly, A., Palioura, S. & Söll, D. Natural expansion of the genetic code. Nat Chem Biol 3, 29–35 (2007). https://doi.org/10.1038/nchembio847

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing