Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Phosphatidylinositol transfer proteins and cellular nanoreactors for lipid signaling

Abstract

Membrane lipids function as structural molecules, reservoirs for second messengers, membrane platforms that scaffold protein assembly and regulators of enzymes and ion channels. Such diverse lipid functions contribute substantially to cellular mechanisms for fine-tuning membrane-signaling events. Meaningful coordination of these events requires exquisite spatial and temporal control of lipid metabolism and organization, and reliable mechanisms for specifically coupling these parameters to dedicated physiological processes. Recent studies suggest such integration is linked to the action of phosphatidylinositol transfer proteins that operate at the interface of the metabolism, trafficking and organization of specific lipids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A lipid metabolic nanoreactor.
Figure 2: Phospholipid transfer reaction.
Figure 3: PITP crystal structures.
Figure 4: The proposed Sec14p nanoreactor.
Figure 5: The Sec14-nodulin PITP family in A. thaliana.
Figure 6: The metazoan PITP family in humans.

Similar content being viewed by others

References

  1. van Meer, G. Cellular lipidomics. EMBO J. 24, 3159–3165 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berridge, M.J. & Irvine, R.F. Inositol phosphates and cell signalling. Nature 341, 197–205 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Majerus, P.W. Inositol phosphate biochemistry. Annu. Rev. Biochem. 61, 225–250 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Rhee, S.G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nishizuka, Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9, 484–496 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Hurley, J.H. & Meyer, T. Subcellular targeting by membrane lipids. Curr. Opin. Cell Biol. 13, 146–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Lemmon, M.A. Phosphoinositide recognition domains. Traffic 4, 201–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Shaw, G. The pleckstrin homology domain: an intriguing multifunctional protein module. Bioessays 18, 35–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Suh, B.C. & Hille, B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol. 15, 370–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Simonsen, A., Wurmser, A.E., Emr, S.D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Martin, T.F. PI(4,5)P(2) regulation of surface membrane traffic. Curr. Opin. Cell Biol. 13, 493–499 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Wenk, M.R. & De Camilli, P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl. Acad. Sci. USA 101, 8262–8269 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Defacque, H. et al. Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes. Mol. Biol. Cell 13, 1190–1202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Janmey, P.A. & Lindberg, U. Cytoskeletal regulation: rich in lipids. Nat. Rev. Mol. Cell Biol. 5, 658–666 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. York, J.D., Odom, A.R., Murphy, R., Ives, E.B. & Wente, S.R. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285, 96–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Odom, A.R., Stahlberg, A., Wente, S.R. & York, J.D. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287, 2026–2029 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Kronke, M. Biophysics of ceramide signaling: interaction with proteins and phase transition of membranes. Chem. Phys. Lipids 101, 109–121 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Pettus, B.J., Chalfant, C.E. & Hannun, Y.A. Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta 1585, 114–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Pettus, B.J., Chalfant, C.E. & Hannun, Y.A. Sphingolipids in inflammation: roles and implications. Curr. Mol. Med. 4, 405–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Spiegel, S. & Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 4, 397–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Stahelin, R.V., Rafter, J.D., Das, S. & Cho, W. The molecular basis of differential subcellular localization of C2 domains of protein kinase C-alpha and group IVa cytosolic phospholipase A2. J. Biol. Chem. 278, 12452–12460 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Iwamoto, K. et al. Local exposure of phosphatidylethanolamine on the yeast plasma membrane is implicated in cell polarity. Genes Cells 9, 891–903 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Moolenaar, W.H. Lysophosphatidic acid signalling. Curr. Opin. Cell Biol. 7, 203–210 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Exton, J.H. Signaling through phosphatidylcholine breakdown. J. Biol. Chem. 265, 1–4 (1990).

    CAS  PubMed  Google Scholar 

  25. Singer, W.D., Brown, H.A. & Sternweis, P.C. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu. Rev. Biochem. 66, 475–509 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Sciorra, V.A. et al. Dual role for phosphoinositides in regulation of yeast and mammalian phospholipase D enzymes. J. Cell Biol. 159, 1039–1049 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liscovitch, M. & Cantley, L.C. Signal transduction and membrane traffic: the PITP/phosphoinositide connection. Cell 81, 659–662 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Hinchliffe, K.A., Ciruela, A. & Irvine, R.F. PIPkins1, their substrates and their products: new functions for old enzymes. Biochim. Biophys. Acta 1436, 87–104 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Cleves, A., McGee, T. & Bankaitis, V. Phospholipid transfer proteins: a biological debut. Trends Cell Biol. 1, 30–34 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Schwille, P., Haupts, U., Maiti, S. & Webb, W.W. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 77, 2251–2265 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Furst, W. & Sandhoff, K. Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim. Biophys. Acta 1126, 1–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Wirtz, K.W. Phospholipid transfer proteins revisited. Biochem. J. 324, 353–360 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hsuan, J. & Cockcroft, S. The PITP family of phosphatidylinositol transfer proteins. Genome Biol. 2 REVIEWS3011 (2001).

  34. Phillips, S.E. et al. The diverse biological functions of phosphatidylinositol transfer proteins in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 41, 21–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Sha, B., Phillips, S.E., Bankaitis, V.A. & Luo, M. Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein. Nature 391, 506–510 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Phillips, S.E. et al. Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo. Mol. Cell 4, 187–197 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Yoder, M.D. et al. Structure of a multifunctional protein. Mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine. J. Biol. Chem. 276, 9246–9252 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Schouten, A. et al. Structure of apo-phosphatidylinositol transfer protein alpha provides insight into membrane association. EMBO J. 21, 2117–2121 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tilley, S.J. et al. Structure-function analysis of human [corrected] phosphatidylinositol transfer protein alpha bound to phosphatidylinositol. Structure 12, 317–326 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Roderick, S.L. et al. Structure of human phosphatidylcholine transfer protein in complex with its ligand. Nat. Struct. Biol. 9, 507–511 (2002).

    CAS  PubMed  Google Scholar 

  42. Li, X. et al. Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J. Cell Biol. 157, 63–77 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Im, Y.J., Raychaudhuri, S., Prinz, W.A. & Hurley, J.H. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature 437, 154–158 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kostenko, E.V., Mahon, G.M., Cheng, L. & Whitehead, I.P. The Sec14 homology domain regulates the cellular distribution and transforming activity of the Rho-specific guanine nucleotide exchange factor Dbs. J. Biol. Chem. 280, 2807–2817 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Sirokmany, G. et al. Sec14 homology domain targets p50RhoGAP to endosomes and provides a link between Rab and Rho GTPases. J. Biol. Chem. 281, 6096–6105 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Gu, M., Warshawsky, I. & Majerus, P.W. Cloning and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to retinaldehyde-binding protein and yeast SEC14p. Proc. Natl. Acad. Sci. USA 89, 2980–2984 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huynh, H. et al. Homotypic secretory vesicle fusion induced by the protein tyrosine phosphatase MEG2 depends on polyphosphoinositides in T cells. J. Immunol. 171, 6661–6671 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Whitehead, I.P., Campbell, S., Rossman, K.L. & Der, C.J. Dbl family proteins. Biochim. Biophys. Acta 1332, F1–23 (1997).

    CAS  PubMed  Google Scholar 

  49. Rossman, K.L. et al. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. EMBO J. 21, 1315–1326 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng, L. et al. RhoGEF specificity mutants implicate RhoA as a target for Dbs transforming activity. Mol. Cell. Biol. 22, 6895–6905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D'Angelo, I., Welti, S., Bonneau, F. & Scheffzek, K. A novel bipartite phospholipid-binding module in the neurofibromatosis type 1 protein. EMBO Rep. 7, 174–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Kearns, M.A. et al. Novel developmentally regulated phosphoinositide binding proteins from soybean whose expression bypasses the requirement for an essential phosphatidylinositol transfer protein in yeast. EMBO J. 17, 4004–4017 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Monks, D.E., Aghoram, K., Courtney, P.D., DeWald, D.B. & Dewey, R.E. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell 13, 1205–1219 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Min, K.C., Kovall, R.A. & Hendrickson, W.A. Crystal structure of human alpha-tocopherol transfer protein bound to its ligand: implications for ataxia with vitamin E deficiency. Proc. Natl. Acad. Sci. USA 100, 14713–14718 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stocker, A., Tomizaki, T., Schulze-Briese, C. & Baumann, U. Crystal structure of the human supernatant protein factor. Structure 10, 1533–1540 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Panagabko, C. et al. Ligand specificity in the CRAL-TRIO protein family. Biochemistry 42, 6467–6474 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Rogers, D.P. & Bankaitis, V.A. Phospholipid transfer proteins and physiological functions. Int. Rev. Cytol. 197, 35–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Hay, J.C. & Martin, T.F. Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca(2+)-activated secretion. Nature 366, 572–575 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Ohashi, M. et al. A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature 377, 544–547 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Cunningham, E. et al. The yeast and mammalian isoforms of phosphatidylinositol transfer protein can all restore phospholipase C-mediated inositol lipid signaling in cytosol-depleted RBL-2H3 and HL-60 cells. Proc. Natl. Acad. Sci. USA 93, 6589–6593 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Simon, J.P. et al. An essential role for the phosphatidylinositol transfer protein in the scission of coatomer-coated vesicles from the trans-Golgi network. Proc. Natl. Acad. Sci. USA 95, 11181–11186 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jones, S.M., Alb, J.G., Jr., Phillips, S.E., Bankaitis, V.A. & Howell, K.E. A phosphatidylinositol 3-kinase and phosphatidylinositol transfer protein act synergistically in formation of constitutive transport vesicles from the trans-Golgi network. J. Biol. Chem. 273, 10349–10354 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Cleves, A.E. et al. Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64, 789–800 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bankaitis, V.A., Aitken, J.R., Cleves, A.E. & Dowhan, W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347, 561–562 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Guo, S., Stolz, L.E., Lemrow, S.M. & York, J.D. SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J. Biol. Chem. 274, 12990–12995 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Hama, H., Schnieders, E.A., Thorner, J., Takemoto, J.Y. & DeWald, D.B. Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274, 34294–34300 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Rivas, M.P. et al. Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to “bypass Sec14p” and inositol auxotrophy. Mol. Biol. Cell 10, 2235–2250 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, X. et al. Identification of a novel family of nonclassic yeast phosphatidylinositol transfer proteins whose function modulates phospholipase D activity and Sec14p-independent cell growth. Mol. Biol. Cell 11, 1989–2005 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schnabl, M. et al. Subcellular localization of yeast Sec14 homologues and their involvement in regulation of phospholipid turnover. Eur. J. Biochem. 270, 3133–3145 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Routt, S.M. et al. Nonclassical PITPs activate PLD via the Stt4p PtdIns-4-kinase and modulate function of late stages of exocytosis in vegetative yeast. Traffic 6, 1157–1172 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Sreenivas, A., Patton-Vogt, J.L., Bruno, V., Griac, P. & Henry, S.A. A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J. Biol. Chem. 273, 16635–16638 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Xie, Z. et al. Phospholipase D activity is required for suppression of yeast phosphatidylinositol transfer protein defects. Proc. Natl. Acad. Sci. USA 95, 12346–12351 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xie, Z., Fang, M. & Bankaitis, V.A. Evidence for an intrinsic toxicity of phosphatidylcholine to Sec14p-dependent protein transport from the yeast Golgi complex. Mol. Biol. Cell 12, 1117–1129 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, W.I., Routt, S., Bankaitis, V.A. & Voelker, D.R. A new gene involved in the transport-dependent metabolism of phosphatidylserine, PSTB2/PDR17, shares sequence similarity with the gene encoding the phosphatidylinositol/phosphatidylcholine transfer protein, SEC14. J. Biol. Chem. 275, 14446–14456 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Wu, W.I. & Voelker, D.R. Reconstitution of phosphatidylserine transport from chemically defined donor membranes to phosphatidylserine decarboxylase 2 implicates specific lipid domains in the process. J. Biol. Chem. 279, 6635–6642 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Wu, W.I. & Voelker, D.R. Biochemistry and genetics of interorganelle aminoglycerophospholipid transport. Semin. Cell Dev. Biol. 13, 185–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Rudge, S.A. et al. Roles of phosphoinositides and of Spo14p (phospholipase D)-generated phosphatidic acid during yeast sporulation. Mol. Biol. Cell 15, 207–218 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Engebrecht, J. Cell signaling in yeast sporulation. Biochem. Biophys. Res. Commun. 306, 325–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Kapranov, P., Routt, S.M., Bankaitis, V.A., de Bruijn, F.J. & Szczyglowski, K. Nodule-specific regulation of phosphatidylinositol transfer protein expression in Lotus japonicus. Plant Cell 13, 1369–1382 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vincent, P. et al. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J. Cell Biol. 168, 801–812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Anantharaman, V. & Aravind, L. The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biol. 3 research0023 (2002).

  82. Peterman, T.K., Ohol, Y.M., McReynolds, L.J. & Luna, E.J. Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol. 136, 3080–3094 discussion 3001–3002 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Yamniuk, A.P. & Vogel, H.J. Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol. Biotechnol. 27, 33–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Weimar, W.R., Lane, P.W. & Sidman, R.L. Vibrator (vb): a spinocerebellar system degeneration with autosomal recessive inheritance in mice. Brain Res. 251, 357–364 (1982).

    Article  CAS  PubMed  Google Scholar 

  86. Hamilton, B.A. et al. The vibrator mutation causes neurodegeneration via reduced expression of PITP alpha: positional complementation cloning and extragenic suppression. Neuron 18, 711–722 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Alb, J.G., Jr. et al. Mice lacking phosphatidylinositol transfer protein-alpha exhibit spinocerebellar degeneration, intestinal and hepatic steatosis, and hypoglycemia. J. Biol. Chem. 278, 33501–33518 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Xie, Y. et al. Phosphatidylinositol transfer protein-alpha in netrin-1-induced PLC signalling and neurite outgrowth. Nat. Cell Biol. 7, 1124–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Giansanti, M.G. et al. The class I PITP giotto is required for Drosophila cytokinesis. Curr. Biol. 16, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Gatt, M.K. & Glover, D.M. The Drosophila phosphatidylinositol transfer protein encoded by vibrator is essential to maintain cleavage-furrow ingression in cytokinesis. J. Cell Sci. 119, 2225–2235 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Milligan, S.C., Alb, J.G., Jr., Elagina, R.B., Bankaitis, V.A. & Hyde, D.R. The phosphatidylinositol transfer protein domain of Drosophila retinal degeneration B protein is essential for photoreceptor cell survival and recovery from light stimulation. J. Cell Biol. 139, 351–363 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chang, J.T. et al. Mammalian homolog of Drosophila retinal degeneration B rescues the mutant fly phenotype. J. Neurosci. 17, 5881–5890 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Phillips, S.E., Ile, K.E., Boukhelifa, M., Huijbregts, R.P. & Bankaitis, V.A. Specific and nonspecific membrane-binding determinants cooperate in targeting phosphatidylinositol transfer protein beta-isoform to the mammalian trans-Golgi network. Mol. Biol. Cell 17, 2498–2512 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. DeVries, K.J. et al. Fluorescently labeled phosphatidylinositol transfer protein isoforms (alpha and beta), microinjected into fetal bovine heart endothelial cells, are targeted to distinct intracellular sites. Exp. Cell Res. 227, 33–39 (1996).

    Article  CAS  Google Scholar 

  95. Litvak, V., Dahan, N., Ramachandran, S., Sabanay, H. & Lev, S. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nat. Cell Biol. 7, 225–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Liljedahl, M. et al. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104, 409–420 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Baron, C.L. & Malhotra, V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295, 325–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Jones, B. et al. Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat. Genet. 34, 29–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Holthuis, J.C. & Levine, T.P. Lipid traffic: floppy drives and a superhighway. Nat. Rev. Mol. Cell Biol. 6, 209–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Skinner, H.B., Alb, J.G., Jr., Whitters, E.A., Helmkamp, G.M., Jr. & Bankaitis, V.A. Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast SEC14 gene product. EMBO J. 12, 4775–4784 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A. & Hahn, K.M. Activation of endogenous Cdc42 visualized in living cells. Science 305, 1615–1619 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Raychaudhuri, S., Im, Y.J., Hurley, J.H. & Prinz, W.A. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. J. Cell Biol. 173, 107–119 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yanagisawa, L.L. et al. Activity of specific lipid-regulated ADP ribosylation factor-GTPase-activating proteins is required for Sec14p-dependent Golgi secretory function in yeast. Mol. Biol. Cell 13, 2193–2206 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lewis, S.M., Poon, P.P., Singer, R.A., Johnston, G.C. & Spang, A. The ArfGAP Glo3 is required for the generation of COPI vesicles. Mol. Biol. Cell 15, 4064–4072 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Robinson, M. et al. The Gcs1 Arf-GAP mediates Snc1,2 v-SNARE retrieval to the Golgi in yeast. Mol. Biol. Cell 17, 1845–1858 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee, S.Y., Yang, J.S., Hong, W., Premont, R.T. & Hsu, V.W. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J. Cell Biol. 168, 281–290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Loewen, C.J., Roy, A. & Levine, T.P. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22, 2025–2035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health to V.A.B. K.E.I. and G.S. were also supported by a Predoctoral Training Grant from the US National Institutes of Health and a Postdoctoral Fellowship from the Deutsche Forschungsgemeinschaft, respectively.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ile, K., Schaaf, G. & Bankaitis, V. Phosphatidylinositol transfer proteins and cellular nanoreactors for lipid signaling. Nat Chem Biol 2, 576–583 (2006). https://doi.org/10.1038/nchembio835

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio835

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing