Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Post-translational enzyme activation in an animal via optimized conditional protein splicing

Abstract

Control over the timing, location and level of protein activity in vivo is crucial to understanding biological function1. Living systems are able to respond to external and internal stimuli rapidly and in a graded fashion by maintaining a pool of proteins whose activities are altered through post-translational modifications2. Here we show that the process of protein trans-splicing3 can be used to modulate enzymatic activity both in cultured cells and in Drosophila melanogaster. We used an optimized conditional protein splicing4 system to rapidly trigger the in vivo ligation of two inactive fragments of firefly luciferase in a tunable manner. This technique provides a means of controlling enzymatic function with greater speed and precision than with standard genetic techniques and is a useful tool for probing biological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional protein splicing.
Figure 2: Splicing and activation of luciferase in cultured cells.
Figure 3: Optimization of the luciferase CPS system.
Figure 4: Activation of luciferase in living D. melanogaster.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Shogren-Knaak, M.A., Alaimo, P.J. & Shokat, K.M. Recent advances in chemical approaches to the study of biological systems. Annu. Rev. Cell Dev. Biol. 17, 405–433 (2001).

    Article  CAS  Google Scholar 

  2. Walsh, C.T., Garneau-Tsodikova, S. & Gatto, G.J., Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Edn Engl. 44, 7342–7372 (2005).

    Article  CAS  Google Scholar 

  3. Paulus, H. Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 69, 447–496 (2000).

    Article  CAS  Google Scholar 

  4. Mootz, H.D. & Muir, T.W. Protein splicing triggered by a small molecule. J. Am. Chem. Soc. 124, 9044–9045 (2002).

    Article  CAS  Google Scholar 

  5. Wu, H., Hu, Z. & Liu, X.Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. USA 95, 9226–9231 (1998).

    Article  CAS  Google Scholar 

  6. Choi, J.J. et al. Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans. J. Mol. Biol. 356, 1093–1106 (2006).

    Article  CAS  Google Scholar 

  7. Iwai, H., Zuger, S., Jin, J. & Tam, P.H. Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. 580, 1853–1858 (2006).

    Article  CAS  Google Scholar 

  8. Caspi, J., Amitai, G., Belenkiy, O. & Pietrokovski, S. Distribution of split DnaE inteins in cyanobacteria. Mol. Microbiol. 50, 1569–1577 (2003).

    Article  CAS  Google Scholar 

  9. Adam, E. & Perler, F.B. Development of a positive genetic selection system for inhibition of protein splicing using mycobacterial inteins in Escherichia coli DNA gyrase subunit A. J. Mol. Microbiol. Biotechnol. 4, 479–487 (2002).

    CAS  PubMed  Google Scholar 

  10. Zeidler, M.P. et al. Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat. Biotechnol. 22, 871–876 (2004).

    Article  CAS  Google Scholar 

  11. Buskirk, A.R., Ong, Y.-C., Gartner, Z.J. & Liu, D.R. Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc. Natl. Acad. Sci. USA 101, 10505–10510 (2004).

    Article  CAS  Google Scholar 

  12. Skretas, G. & Wood, D.W. Regulation of protein activity with small-molecule-controlled inteins. Protein Sci. 14, 523–532 (2005).

    Article  CAS  Google Scholar 

  13. Mootz, H.D., Blum, E.S., Tyskiewicz, A.B. & Muir, T.W. Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J. Am. Chem. Soc. 125, 10561–10569 (2003).

    Article  CAS  Google Scholar 

  14. Shi, J. & Muir, T.W. Development of a tandem protein trans-splicing system based on native and engineered split inteins. J. Am. Chem. Soc. 127, 6198–6206 (2005).

    Article  CAS  Google Scholar 

  15. Mootz, H.D., Blum, E.S. & Muir, T.W. Activation of an autoregulated protein kinase by conditional protein splicing. Angew. Chem. Int. Edn Engl. 43, 5189–5192 (2004).

    Article  CAS  Google Scholar 

  16. Welsh, D.K. & Kay, S.A. Bioluminescence imaging in living organisms. Curr. Opin. Biotechnol. 16, 73–78 (2005).

    Article  CAS  Google Scholar 

  17. Ozawa, T., Kaihara, A., Sato, M., Tachihara, K. & Umezawa, Y. Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal. Chem. 73, 2516–2521 (2001).

    Article  CAS  Google Scholar 

  18. Chong, S. et al. Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J. Biol. Chem. 271, 22159–22168 (1996).

    Article  CAS  Google Scholar 

  19. Chong, S. & Xu, M.Q. Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J. Biol. Chem. 272, 15587–15590 (1997).

    Article  CAS  Google Scholar 

  20. Spencer, D.M., Wandless, T.J., Schreiber, S.L. & Crabtree, G.R. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).

    Article  CAS  Google Scholar 

  21. Kohler, J.J. & Bertozzi, C.R. Regulating cell surface glycosylation by small molecule control of enzyme localization. Chem. Biol. 10, 1303–1311 (2003).

    Article  CAS  Google Scholar 

  22. Brandes, C. et al. Novel features of Drosophila period transcription revealed by real-time luciferase reporting. Neuron 16, 687–692 (1996).

    Article  CAS  Google Scholar 

  23. Stempfl, T. et al. Identification of circadian-clock-regulated enhancers and genes of Drosophila melanogaster by transposon mobilization and luciferase reporting of cyclical gene expression. Genetics 160, 571–593 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  Google Scholar 

  25. Bieschke, E.T., Wheeler, J.C. & Tower, J. Doxycycline-induced transgene expression during Drosophila development and aging. Mol. Gen. Genet. 258, 571–579 (1998).

    Article  CAS  Google Scholar 

  26. Stebbins, M.J. & Yin, J.C. Adaptable doxycycline-regulated gene expression systems for Drosophila. Gene 270, 103–111 (2001).

    Article  CAS  Google Scholar 

  27. Ye, X. et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 283, 88–91 (1999).

    Article  CAS  Google Scholar 

  28. Yuen, C.M., Rodda, S.J., Vokes, S.A., McMahon, A.P. & Liu, D.R. Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J. Am. Chem. Soc. 128, 8939–8946 (2006).

    Article  CAS  Google Scholar 

  29. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  30. Karess, R.E. & Rubin, G.M. Analysis of P transposable element functions in Drosophila. Cell 38, 135–146 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Hahn and M. Pratt for helpful comments on the manuscript, and Ariad Pharmaceuticals for providing compound AP21967. This work was supported by grants from the US National Institutes of Health to T.W.M. (EB001991 and GM072015) and M.W.Y. (NS053087), and by a Howard Hughes Medical Institute fellowship to E.C.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom W Muir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Attempts to splice at luciferase Arg437. (PDF 137 kb)

Supplementary Fig. 2

Splicing of luciferase437–551 with maltose-binding protein. (PDF 71 kb)

Supplementary Fig. 3

Dose-dependent splicing in response to rapamycin or rapamycin analog. (PDF 34 kb)

Supplementary Fig. 4

CPS-activated luciferase in mammalian cells. (PDF 29 kb)

Supplementary Fig. 5

Poor expression of C-lucFRB3. (PDF 96 kb)

Supplementary Fig. 6

Additional luciferase traces. (PDF 412 kb)

Supplementary Fig. 7

Generation of full-length luciferase through CPS in adult D. melanogaster. (PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, E., Saez, L., Young, M. et al. Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol 3, 50–54 (2007). https://doi.org/10.1038/nchembio832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing