Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrostatic couplings in OmpA ion-channel gating suggest a mechanism for pore opening

Abstract

The molecular forces that drive structural transitions between the open and closed states of channels and transporters are not well understood. The gate of the OmpA channel is formed by the central Glu52-Arg138 salt bridge, which can open to form alternate ion pairs with Lys82 and Glu128. To gain deeper insight into the channel-opening mechanism, we measured interaction energies between the relevant side chains by double-mutant cycle analysis and correlated these with the channel activities of corresponding point mutants. The closed central salt bridge has a strong interaction energy of −5.6 kcal mol−1, which can be broken by forming the open-state salt bridge Glu52-Lys82 (ΔΔGInter = −3.5 kcal mol−1) and a weak interaction between Arg138 and Glu128 (ΔΔGInter = −0.6 kcal mol−1). A covalent disulfide bond in place of the central salt bridge completely blocks the channel. Growth assays indicate that this gating mechanism could physiologically contribute to the osmoprotection of Escherichia coli cells from environmental stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Configuration of side chains in the gate region of OmpA, based on the high-resolution crystal structure of its transmembrane domain.
Figure 2: Comparison of the structural and folding properties of wild-type and several mutant OmpAs in diC16:1PC:C16:0C18:1PG (89.5:10.5) bilayers at 37.5 °C, pH 9.2.
Figure 3: Double-mutant cycles for estimating the interaction energies, ΔΔGInter, between the charged side chains in the gating region of the OmpA channel.
Figure 4: Representative single-channel recordings of the small conductance states of wild-type and mutant OmpAs in planar lipid bilayers at +100 mV.
Figure 5: Statistical analysis of the single-channel recordings of wild-type and mutant OmpAs in planar bilayers.
Figure 6: Reversible blockage of channel properties by disulfide formation in place of the central salt bridge of OmpA.
Figure 7: Correlations between pair-wise side chain interactions, single-channel openings and conformational dynamics measured by NMR relaxation suggest a self-consistent model for the opening of the OmpA channel.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Perutz, M.F. Electrostatic effects in proteins. Science 201, 1187–1191 (1978).

    Article  CAS  Google Scholar 

  2. Lee, L.P. & Tidor, B. Barstar is electrostatically optimized for tight binding to barnase. Nat. Struct. Biol. 8, 73–76 (2001).

    Article  CAS  Google Scholar 

  3. Waldburger, C.D., Schildbach, J.F. & Sauer, R.T. Are buried salt bridges important for protein stability and conformational specificity? Nat. Struct. Biol. 2, 122–128 (1995).

    Article  CAS  Google Scholar 

  4. Yang, A.-S. & Honig, B. Electrostatic effects on protein stability. Curr. Opin. Struct. Biol. 2, 40–45 (1992).

    Article  CAS  Google Scholar 

  5. Engelman, D.M. et al. Membrane protein folding: beyond the two stage model. FEBS Lett. 555, 122–125 (2003).

    Article  CAS  Google Scholar 

  6. Call, M.E., Pyrdol, J., Wiedmann, M. & Wucherpfennig, K.W. The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111, 967–979 (2002).

    Article  CAS  Google Scholar 

  7. Kim, J.M. et al. Structural origins of constitutive activation in rhodopsin: role of the K296/E113 salt bridge. Proc. Natl. Acad. Sci. USA 101, 12508–12513 (2004).

    Article  CAS  Google Scholar 

  8. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003).

    Article  CAS  Google Scholar 

  9. Lecar, H., Larsson, H.P. & Grabe, M. Electrostatic model of S4 motion in voltage-gated ion channels. Biophys. J. 85, 2854–2864 (2003).

    Article  CAS  Google Scholar 

  10. Koebnik, R., Locher, K.P. & Van Gelder, P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37, 239–253 (2000).

    Article  CAS  Google Scholar 

  11. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    Article  CAS  Google Scholar 

  12. Vogel, H. & Jähnig, F. Models for the structure of outer-membrane proteins of Escherichia coli derived from Raman spectroscopy and prediction methods. J. Mol. Biol. 190, 191–199 (1986).

    Article  CAS  Google Scholar 

  13. Sugawara, E. & Nikaido, H. Pore-forming activity of OmpA protein of Escherichia coli. J. Biol. Chem. 267, 2507–2511 (1992).

    CAS  PubMed  Google Scholar 

  14. Saint, N., De, E., Julien, S., Orange, N. & Molle, G. Ionophore properties of OmpA of Escherichia coli. Biochim. Biophys. Acta 1145, 119–123 (1993).

    Article  CAS  Google Scholar 

  15. Zakharian, E. & Reusch, R.N. Outer membrane protein A of Escherichia coli forms temperature-sensitive channels in planar lipid bilayers. FEBS Lett. 555, 229–235 (2003).

    Article  CAS  Google Scholar 

  16. Arora, A., Rinehart, D., Szabo, G. & Tamm, L.K. Refolded outer membrane protein A of Escherichia coli forms ion channels with two conductance states in planar lipid bilayers. J. Biol. Chem. 275, 1594–1600 (2000).

    Article  CAS  Google Scholar 

  17. Schweizer, M., Hindennach, I., Garten, W. & Henning, U. Major proteins of the Escherichia coli outer cell envelope membrane. Interaction of protein II with lipopolysaccharide. Eur. J. Biochem. 82, 211–217 (1978).

    Article  CAS  Google Scholar 

  18. Prasadarao, N.V. et al. Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect. Immun. 64, 146–153 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pautsch, A. & Schulz, G.E. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5, 1013–1017 (1998).

    Article  CAS  Google Scholar 

  20. Arora, A., Abildgaard, F., Bushweller, J.H. & Tamm, L.K. Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struct. Biol. 8, 334–338 (2001).

    Article  CAS  Google Scholar 

  21. Bond, P.J., Faraldo-Gomez, J.D. & Sansom, M.S. OmpA: a pore or not a pore? Simulation and modeling studies. Biophys. J. 83, 763–775 (2002).

    Article  CAS  Google Scholar 

  22. Fersht, A.R., Matouschek, A. & Serrano, L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771–782 (1992).

    Article  CAS  Google Scholar 

  23. Pautsch, A. & Schulz, G.E. High-resolution structure of the OmpA membrane domain. J. Mol. Biol. 298, 273–282 (2000).

    Article  CAS  Google Scholar 

  24. Hong, H. & Tamm, L.K. Elastic coupling of integral membrane protein stability to lipid bilayer forces. Proc. Natl. Acad. Sci. USA 101, 4065–4070 (2004).

    Article  CAS  Google Scholar 

  25. Kleinschmidt, J.H. & Tamm, L.K. Folding intermediates of a β-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism. Biochemistry 35, 12993–13000 (1996).

    Article  CAS  Google Scholar 

  26. Colquhoun, D. & Hawkes, A.G. in Single Channel Recording (eds. Sakmann, B. & Nehrer, E.) 397–482 (Plenum, New York, 1995).

    Book  Google Scholar 

  27. Horovitz, A., Serrano, L., Avron, B., Bycroft, M. & Fersht, A.R. Strength and co-operativity of contributions of surface salt bridges to protein stability. J. Mol. Biol. 216, 1031–1044 (1990).

    Article  CAS  Google Scholar 

  28. Tissot, A.C., Vuilleumier, S. & Fersht, A.R. Importance of two buried salt bridges in the stability and folding pathway of barnase. Biochemistry 35, 6786–6794 (1996).

    Article  CAS  Google Scholar 

  29. Marqusee, S. & Sauer, R.T. Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in λ repressor. Protein Sci. 3, 2217–2225 (1994).

    Article  CAS  Google Scholar 

  30. Anderson, D.E., Becktel, W.J. & Dahlquist, F.W. pH-induced denaturation of proteins: a single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry 29, 2403–2408 (1990).

    Article  CAS  Google Scholar 

  31. Kumar, S. & Nussinov, R. Fluctuations in ion pairs and their stabilities in proteins. Proteins 43, 433–454 (2001).

    Article  CAS  Google Scholar 

  32. Gallivan, J.P. & Dougherty, D.A. Cation-π interactions in structural biology. Proc. Natl. Acad. Sci. USA 96, 9459–9464 (1999).

    Article  CAS  Google Scholar 

  33. Thompson, S.E. & Smithrud, D.B. Carboxylates stacked over aromatic rings promote salt bridge formation in water. J. Am. Chem. Soc. 124, 442–449 (2002).

    Article  CAS  Google Scholar 

  34. Tafer, H., Hiller, S., Hilty, C., Fernandez, C. & Wuthrich, K. Nonrandom structure in the urea-unfolded Escherichia coli outer membrane protein X (OmpX). Biochemistry 43, 860–869 (2004).

    Article  CAS  Google Scholar 

  35. Myers, J.K., Pace, C.N. & Scholtz, J.M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148 (1995).

    Article  CAS  Google Scholar 

  36. Bond, P.J. & Sansom, M.S. Membrane protein dynamics versus environment: simulations of OmpA in a micelle and in a bilayer. J. Mol. Biol. 329, 1035–1053 (2003).

    Article  CAS  Google Scholar 

  37. Tamm, L.K., Abildgaard, F., Arora, A., Blad, H. & Bushweller, J.H. Structure, dynamics and function of the outer membrane protein A (OmpA) and influenza hemagglutinin fusion domain in detergent micelles by solution NMR. FEBS Lett. 555, 139–143 (2003).

    Article  CAS  Google Scholar 

  38. Prilipov, A., Phale, P.S., Koebnik, R., Widmer, C. & Rosenbusch, J.P. Identification and characterization of two quiescent porin genes, nmpC and ompN, in Escherichia coli BE. J. Bacteriol. 180, 3388–3392 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Csonka, L.N. & Hanson, A.D. Prokaryotic osmoregulation: genetics and physiology. Annu. Rev. Microbiol. 45, 569–606 (1991).

    Article  CAS  Google Scholar 

  40. Wood, J.M. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63, 230–262 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schindler, H. & Rosenbusch, J.P. Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc. Natl. Acad. Sci. USA 75, 3751–3755 (1978).

    Article  CAS  Google Scholar 

  42. Khalid, S., Bond, P.J., Deol, S.S. & Sansom, M.S. Modeling and simulations of a bacterial outer membrane protein: OprF from Pseudomonas aeruginosa. Proteins 63, 6–15 (2006).

    Article  CAS  Google Scholar 

  43. Booth, P.J. Sane in the membrane: designing systems to modulate membrane proteins. Curr. Opin. Struct. Biol. 15, 435–440 (2005).

    Article  CAS  Google Scholar 

  44. Bowie, J.U. Solving the membrane protein folding problem. Nature 438, 581–589 (2005).

    Article  CAS  Google Scholar 

  45. Lau, F.W. & Bowie, J.U. A method for assessing the stability of a membrane protein. Biochemistry 36, 5884–5892 (1997).

    Article  CAS  Google Scholar 

  46. Senes, A., Engel, D.E. & DeGrado, W.F. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr. Opin. Struct. Biol. 14, 465–479 (2004).

    Article  CAS  Google Scholar 

  47. Kleinschmidt, J.H., den Blaauwen, T., Driessen, A.J. & Tamm, L.K. Outer membrane protein A of Escherichia coli inserts and folds into lipid bilayers by a concerted mechanism. Biochemistry 38, 5006–5016 (1999).

    Article  CAS  Google Scholar 

  48. Prilipov, A., Phale, P.S., Van Gelder, P., Rosenbusch, J.P. & Koebnik, R. Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E coli. FEMS Microbiol. Lett. 163, 65–72 (1998).

    Article  CAS  Google Scholar 

  49. Neher, E. & Stevens, C.F. Conductance fluctuations and ionic pores in membranes. Annu. Rev. Biophys. Bioeng. 6, 345–381 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Reinhart for technical assistance, M. Kim and D. Cafiso (University of Virginia) for sharing the BL21(DE3) ([ΔlamB ompF::Tn5 ΔompA ΔompC]) strain, and the late R. Kadner (University of Virginia) and R. Kaback (University of California Los Angeles) for helpful suggestions. This work was supported by US National Institutes of Health grant GM51329.

Author information

Authors and Affiliations

Authors

Contributions

H.H. performed all experiments, H.H. and L.K.T. designed the experiments and wrote the manuscript, and G.S. participated in the electrophysiological experiments.

Corresponding author

Correspondence to Lukas K Tamm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Unfolding transitions of wild-type and mutant OmpA in lipid bilayers measured by fluorescence spectroscopy. (PDF 96 kb)

Supplementary Fig. 2

Comparison of the SDS-PAGE patterns for the boiled samples of wild type, E52C R138C mutant, and the transmembrane domains of wild type and E52C R138C mutants in the presence and absence of 1% βME. (PDF 615 kb)

Supplementary Fig. 3

SDS-PAGE of the outer-membrane fractions of E. coli BL21(DE3) mutant cells expressing wild-type and E52C R138C mutant OmpA with and without added 1% NaCl in the growth media. (PDF 894 kb)

Supplementary Fig. 4

Comparison of the growth behavior of E. coli BL21(DE3) mutant cells expressing the plasmid-coded OmpF in LB media with different NaCl concentrations. (PDF 331 kb)

Supplementary Fig. 5

Growth of E. coli BL21(DE3) mutant cells expressing the plasmid-coded E52C K82C mutant in the presence and absence of 0.05% βME in LB media with no added NaCl. (PDF 320 kb)

Supplementary Fig. 6

Effects of sucrose on growth behavior of E. coli BL21(DE3) mutant cells expressing the plasmid-coded wild-type OmpA and E52C R138C mutant in the presence and absence of 0.05% βME. (PDF 182 kb)

Supplementary Fig. 7

Additivity of m-value effects in double-mutant cycles for probing the interaction energies between the side chains in the gating region of the OmpA channel. (PDF 304 kb)

Supplementary Results

Analysis of additional double-mutant cycles and m values in double-mutant cycles. (DOC 33 kb)

Supplementary Methods

Supplementary biochemical, spectroscopic and analytical methods. (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, H., Szabo, G. & Tamm, L. Electrostatic couplings in OmpA ion-channel gating suggest a mechanism for pore opening. Nat Chem Biol 2, 627–635 (2006). https://doi.org/10.1038/nchembio827

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing