Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia

A Corrigendum to this article was published on 01 July 2007

This article has been updated

Abstract

Expansion of GAA·TTC triplets within an intron in FXN (the gene encoding frataxin) leads to transcription silencing, forming the molecular basis for the neurodegenerative disease Friedreich's ataxia. Gene silencing at expanded FXN alleles is accompanied by hypoacetylation of histones H3 and H4 and trimethylation of histone H3 at Lys9, observations that are consistent with a heterochromatin-mediated repression mechanism. We describe the synthesis and characterization of a class of histone deacetylase (HDAC) inhibitors that reverse FXN silencing in primary lymphocytes from individuals with Friedreich's ataxia. We show that these molecules directly affect the histones associated with FXN, increasing acetylation at particular lysine residues on histones H3 and H4 (H3K14, H4K5 and H4K12). This class of HDAC inhibitors may yield therapeutics for Friedreich's ataxia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histone modifications on FXN chromatin.
Figure 2: Effects of HDAC inhibitors on acetylation and FXN mRNA in FRDA cells.
Figure 3: HDAC inhibitors increase frataxin protein in the FRDA lymphoid cell line.
Figure 4: HDAC inhibitors increase FXN mRNA in primary lymphocytes from individuals with FRDA.
Figure 5: Effects of HDAC inhibitors on FXN histone acetylation.

Similar content being viewed by others

Change history

  • 22 May 2007

    CFI added

References

  1. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article  CAS  Google Scholar 

  2. Pandolfo, M. Friedreich ataxia. Semin. Pediatr. Neurol. 10, 163–172 (2003).

    Article  Google Scholar 

  3. Bidichandani, S.I., Ashizawa, T. & Patel, P.I. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am. J. Hum. Genet. 62, 111–121 (1998).

    Article  CAS  Google Scholar 

  4. Sakamoto, N. et al. Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. Mol. Cell 3, 465–475 (1999).

    Article  CAS  Google Scholar 

  5. Ohshima, K., Montermini, L., Wells, R.D. & Pandolfo, M. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J. Biol. Chem. 273, 14588–14595 (1998).

    Article  CAS  Google Scholar 

  6. Grabczyk, E. & Usdin, K. The GAA-TTC triplet repeat expanded in Friedreich's ataxia impedes transcription elongation by T7 RNA polymerase in a length and supercoil dependent manner. Nucleic Acids Res. 28, 2815–2822 (2000).

    Article  CAS  Google Scholar 

  7. Saveliev, A., Everett, C., Sharpe, T., Webster, Z. & Festenstein, R. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422, 909–913 (2003).

    Article  CAS  Google Scholar 

  8. Elgin, S.C. & Grewal, S.I. Heterochromatin: silence is golden. Curr. Biol. 13, R895–R898 (2003).

    Article  CAS  Google Scholar 

  9. Grabczyk, E. & Usdin, K. Alleviating transcript insufficiency caused by Friedreich's ataxia triplet repeats. Nucleic Acids Res. 28, 4930–4937 (2000).

    Article  CAS  Google Scholar 

  10. Napierala, M., Dere, R., Vetcher, A. & Wells, R.D. Structure-dependent recombination hot spot activity of GAA.TTC sequences from intron 1 of the Friedreich's ataxia gene. J. Biol. Chem. 279, 6444–6454 (2004).

    Article  CAS  Google Scholar 

  11. Drummond, D.C. et al. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol. 45, 495–528 (2005).

    Article  CAS  Google Scholar 

  12. Di Prospero, N.A. & Fischbeck, K.H. Therapeutics development for triplet repeat expansion diseases. Nat. Rev. Genet. 6, 756–765 (2005).

    Article  CAS  Google Scholar 

  13. Langley, B., Gensert, J.M., Beal, M.F. & Ratan, R.R. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr. Drug Targets CNS Neurol. Disord. 4, 41–50 (2005).

    Article  CAS  Google Scholar 

  14. Peart, M.J. et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA 102, 3697–3702 (2005).

    Article  CAS  Google Scholar 

  15. Sarsero, J.P. et al. Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia. J. Gene Med. 5, 72–81 (2003).

    Article  CAS  Google Scholar 

  16. Burnett, R. et al. DNA sequence-specific polyamides alleviate transcription inhibition associated wtih long GAA-TTC repeats in Friedreich's ataxia. Proc. Natl. Acad. Sci. USA 103, 11497–11502 (2006).

    Article  CAS  Google Scholar 

  17. Wong, J.C., Hong, R. & Schreiber, S.L. Structural biasing elements for in-cell histone deacetylase paralog selectivity. J. Am. Chem. Soc. 125, 5586–5587 (2003).

    Article  CAS  Google Scholar 

  18. Dorer, D.R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002 (1994).

    Article  CAS  Google Scholar 

  19. Pohler, J.R. & Lilley, D.M. The interaction of HMG-box proteins with the four-way DNA junction. Biochem. Soc. Trans. 25, S647 (1997).

    Article  CAS  Google Scholar 

  20. Zhao, Y. et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol. Cell. Biol. 26, 2782–2790 (2006).

    Article  CAS  Google Scholar 

  21. Solomon, J.M. et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell. Biol. 26, 28–38 (2006).

    Article  CAS  Google Scholar 

  22. Annunziato, A.T., Frado, L.L., Seale, R.L. & Woodcock, C.L. Treatment with sodium butyrate inhibits the complete condensation of interphase chromatin. Chromosoma 96, 132–138 (1988).

    Article  CAS  Google Scholar 

  23. Tse, C., Sera, T., Wolffe, A.P. & Hansen, J.C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18, 4629–4638 (1998).

    Article  CAS  Google Scholar 

  24. Annunziato, A.T. & Hansen, J.C. Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Expr. 9, 37–61 (2000).

    Article  CAS  Google Scholar 

  25. Shogren-Knaak, M. et al. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  CAS  Google Scholar 

  26. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  27. Stewart, M.D., Li, J. & Wong, J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell. Biol. 25, 2525–2538 (2005).

    Article  CAS  Google Scholar 

  28. Litt, M.D., Simpson, M., Gaszner, M., Allis, C.D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293, 2453–2455 (2001).

    Article  CAS  Google Scholar 

  29. Gui, C.Y., Ngo, L., Xu, W.S., Richon, V.M. & Marks, P.A. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl. Acad. Sci. USA 101, 1241–1246 (2004).

    Article  CAS  Google Scholar 

  30. Sumner, C.J. et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann. Neurol. 54, 647–654 (2003).

    Article  CAS  Google Scholar 

  31. Senawong, T. et al. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J. Biol. Chem. 278, 43041–43050 (2003).

    Article  CAS  Google Scholar 

  32. Shestakova, E., Bandu, M.T., Doly, J. & Bonnefoy, E. Inhibition of histone deacetylation induces constitutive derepression of the beta interferon promoter and confers antiviral activity. J. Virol. 75, 3444–3452 (2001).

    Article  CAS  Google Scholar 

  33. Suka, N., Suka, Y., Carmen, A.A., Wu, J. & Grunstein, M. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell 8, 473–479 (2001).

    Article  CAS  Google Scholar 

  34. Agalioti, T., Chen, G. & Thanos, D. Deciphering the transcriptional histone acetylation code for a human gene. Cell 111, 381–392 (2002).

    Article  CAS  Google Scholar 

  35. Astrand, C., Klenka, T., Wrange, O. & Belikov, S. Trichostatin A reduces hormone-induced transcription of the MMTV promoter and has pleiotropic effects on its chromatin structure. Eur. J. Biochem. 271, 1153–1162 (2004).

    Article  CAS  Google Scholar 

  36. Aron, J.L. et al. Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Blood 102, 652–658 (2003).

    Article  CAS  Google Scholar 

  37. Hart, P.E. et al. Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch. Neurol. 62, 621–626 (2005).

    Article  Google Scholar 

  38. Ghazizadeh, M. Cisplatin may induce frataxin expression. J. Nippon Med. Sch. 70, 367–371 (2003).

    Article  CAS  Google Scholar 

  39. Turano, M. et al. 3-Nitropropionic acid increases frataxin expression in human lymphoblasts and in transgenic rat PC12 cells. Neurosci. Lett. 350, 184–186 (2003).

    Article  CAS  Google Scholar 

  40. Sturm, B. et al. Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur. J. Clin. Invest. 35, 711–717 (2005).

    Article  CAS  Google Scholar 

  41. Chuma, M. et al. Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology 37, 198–207 (2003).

    Article  CAS  Google Scholar 

  42. Pattyn, F., Speleman, F., De Paepe, A. & Vandesompele, J. RTPrimerDB: the real-time PCR primer and probe database. Nucleic Acids Res. 31, 122–123 (2003).

    Article  CAS  Google Scholar 

  43. Luo, R.X., Postigo, A.A. & Dean, D.C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (R21 NS048989) and the Friedreich's Ataxia Research Alliance (FARA). We thank FARA for postdoctoral support to D.H., R.B. and E.S., and M. Houser for overseeing blood donations at Scripps Clinic in La Jolla, California, USA. We also thank G. Joyce for providing facilities for chemical synthesis.

Author information

Authors and Affiliations

Authors

Contributions

D.H., R.B. and E.S. participated in the design and execution of biological experiments; K.J. was responsible for chemical synthesis; S.L.P. provided human blood samples; J.M.G. conceived and directed the project and wrote the manuscript with the assistance of all authors.

Corresponding author

Correspondence to Joel M Gottesfeld.

Ethics declarations

Competing interests

J.M.G. is a consultant to Repligen Corporation. Repligen has licensed compounds discussed in this paper from the Scripps Research Institute for therapeutics for Friedreich's ataxia and other related neurodegenerative and neuromuscular diseases.

*Note: In the version of this article initially published, no competing financial interests were declared. The authors now declare that they have competing interests that might be perceived to influence the results and discussion reported in this paper. The error has been corrected in the HTML and PDF versions of the article.

Supplementary information

Supplementary Methods

Supplementary synthetic methods and analytical data. (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, D., Jenssen, K., Burnett, R. et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat Chem Biol 2, 551–558 (2006). https://doi.org/10.1038/nchembio815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing