Different polyketide folding modes converge to an identical molecular architecture

Abstract

Metabolic diversity is being studied intensively by evolutionary biologists, but so far there has been no comparison of biosynthetic pathways leading to a particular secondary metabolite in both prokaryotes and eukaryotes. We have detected the bioactive anthraquinone chrysophanol, which serves as a chemical defense in diverse eukaryotic organisms, in a bacterial Nocardia strain, thereby permitting the first comparative biosynthetic study. Two basic modes of folding a polyketide chain to fused-ring aromatic structures have so far been described1: mode F (referring to fungi) and mode S (from Streptomyces). We have demonstrated that in eukaryotes (fungi, higher plants and insects), chrysophanol is formed via folding mode F. In actinomycetes, by contrast, the cyclization follows mode S. Thus, chrysophanol is the first polyketide synthase product that is built up by more than one polyketide folding mode.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2: The four biosynthetic folding modes that might lead from acetyl coenzyme A to chrysophanol (1) in nature, with their joint (4) and individually different (5a5d) hypothetical intermediates, with the expected characteristic 13C labeling patterns for 1.
Figure 3
Figure 4: 2D INADEQUATE NMR spectrum of 1 from Nocardia strain Acta 1057 after feeding sodium [1,2-13C2]acetate; the labeling pattern with its pairwise 13C-13C correlations of incorporated intact [13C2] units indicates the presence of mode S folding.

References

  1. 1

    Thomas, R. A biosynthetic classification of fungal and streptomycete fused-ring aromatic polyketides. ChemBioChem 2, 612–627 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Bringmann, G., Wohlfarth, M., Rischer, H., Rückert, M. & Schlauer, J. The polyketide folding in the biogenesis of isoshinanolone and plumbagin from Ancistrocladus heyneanus (Ancistrocladaceae). Tetrahedr. Lett. 39, 8445 (1998).

    CAS  Article  Google Scholar 

  3. 3

    Bringmann, G., Wohlfarth, M., Rischer, H., Grüne, M. & Schlauer, J. A new biosynthetic pathway to alkaloids in plants: acetogenic isoquinolines. Angew. Chem. Int. Edn. Engl. 39, 1464–1466 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Thomson, R.H. Naturally occurring quinones III 383 (Chapman and Hall, New York, 1987).

    Google Scholar 

  5. 5

    Howard, D.F., Phillips, D.W., Jones, T.H. & Blum, M.S. Anthraquinones and anthrones: occurrence and defensive function in a chrysomelid beetle. Naturwissenschaften 69, 91–92 (1982).

    CAS  Article  Google Scholar 

  6. 6

    Hilker, M. & Schulz, S. Anthraquinones in different development stages of Galeruca tanaceti (Coleoptera: Chrysomelidae). J. Chem. Ecol. 17, 2323 (1991).

    CAS  Article  Google Scholar 

  7. 7

    Hilker, M., Eschbach, U. & Dettner, K. Occurrence of anthraquinones in eggs and larvae of several Galerucinae (Coleoptera: Chrysomelidae). Naturwissenschaften 79, 271 (1992).

    CAS  Article  Google Scholar 

  8. 8

    Kunze, A., Witte, L., Aregullin, M., Rodriguez, E. & Proksch, P. Anthraquinones in the leaf beetle Trirhabda geminata (Chrysomelidae). Z. Naturforsch. [C] 51, 249–252 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Mishchenko, N.P., Stepanenko, L.S., Krivoshchekova, O.E. & Maksimov, O.B. Anthraquinones of the lichen Asahinea chrysantha. Him. Prir. Soedin. 2, 160–165 (1980).

    Google Scholar 

  10. 10

    Krivoshchekova, O.E., Stepanenko, L.S., Mishchenko, N.P., Denisenko, V.A. & Maksimov, O.B. Study of lichens from the Parmeliaceae family. II. Pigments. Him. Prir. Soedin. 3, 283–289 (1983).

    Google Scholar 

  11. 11

    Fotso, S. et al. Bhimamycin AE and bhimanone: isolation, structure elucidation and biological activity of novel quinone antibiotics from a terrestrial streptomycete. J. Antibiot. 56, 931–941 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Funa, N. et al. A new pathway for polyketide synthesis in microorganisms. Nature 400, 897–899 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Yagi, A., Makino, K. & Nishioka, I. Constituents of Aloe saponaria. I. Structures of tetrahydroanthracene derivatives and the related anthraquinones. Chem. Pharm. Bull. (Tokyo) 22, 1159–1166 (1974).

    CAS  Article  Google Scholar 

  14. 14

    Bartel, P.L. et al. Biosynthesis of anthraquinones by interspecies cloning of actinorhodin genes in streptomycetes: clarification of actinorhodin gene functions. J. Bacteriol. 172, 4816–4826 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Leistner, E. & Zenk, M. Chrysophanol (1,8-dihydroxy-3-methylanthraquinone) biosynthesis in higher plants. J. Chem. Soc. Chem. Commun. 210–211 (1969).

  16. 16

    Fairbairn, J.W. & Muhtadi, F.J. Biosynthesis and metabolism of anthraquinones in Rumex obtusifolius. Phytochemistry 11, 215–219 (1972).

    CAS  Article  Google Scholar 

  17. 17

    Leistner, E. Second pathway leading to anthraquinones in higher plants. Phytochemistry 10, 3015–3020 (1971).

    CAS  Article  Google Scholar 

  18. 18

    Ahmed, S.A., Bardshiri, E. & Simpson, T.J. A convenient synthesis of isotopically labeled anthraquinones, chrysophanol, islandicin, and emodin. Incorporation of [methyl-2H3]chrysophanol into tajixanthone in Aspergillus variecolor. J. Chem. Soc. Chem. Commun. 883–884 (1987).

  19. 19

    Van Eijk, G.W. Chrysophanol and emodin from Drechslera catenaria. Phytochemistry 13, 650 (1974).

    CAS  Article  Google Scholar 

  20. 20

    Bax, A., Freeman, R. & Frenkiel, T.A. An NMR technique for tracing out the carbon skeleton of an organic molecule. J. Am. Chem. Soc. 103, 2102–2104 (1981).

    CAS  Article  Google Scholar 

  21. 21

    Berger, S. Selective INADEQUATE. A farewell to 2D-NMR? Angew. Chem. Int. Edn. Engl. 27, 1196–1197 (1988).

    Article  Google Scholar 

  22. 22

    Bringmann, G., Noll, T. & Rischer, H. In vitro germination and establishment of tissue cultures of Bulbine caulescens and of two Kniphofia species (Asphodelaceae). Plant Cell Rep. 21, 125–129 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Styles, P. & Stoffe, N.F. A high-resolution NMR probe in which the coil and preamplifier are cooled with liquid helium. J. Magn. Reson. 60, 397–404 (1984).

    CAS  Google Scholar 

  24. 24

    Fiedler, H-P. Biosynthetic capacities of actinomycetes. 1. Screening for new secondary metabolites using UV-visible absorbance spectral libraries. Nat. Prod. Lett. 2, 119–128 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Agarwaj, S.K., Singh, S.S., Verma, S. & Kumar, S. Antifungal activity of anthraquinone derivatives from Rheum emodi. J. Ethnopharmacol. 72, 43–46 (2000).

    Article  Google Scholar 

  26. 26

    Semple, S.J., Pyke, S.M., Reynolds, G.D. & Flower, R.L.P. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antiviral Res. 49, 169–178 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Hilker, M. & Köpf, A. Evaluation of the palatability of chrysomelid larvae containing anthraquinones to birds. Oecologia 100, 421–429 (1995).

    Article  Google Scholar 

  28. 28

    Goodfellow, M., Isik, K. & Yates, E. Actinomycete systematics: an unfinished synthesis. Nova Acta Leopold. 312, 47–82 (1999).

    Google Scholar 

Download references

Acknowledgements

This work is dedicated to Burchard Franck on the occasion of his 80th birthday. Financial support from the Fonds der Chemischen Industrie, the European Commission (grant QLK3-CT-2001-01783; project ACTAPHARM), and the German Research Foundation (DFG Hi 416/16-2) are gratefully acknowledged. We thank D. Moskau (Bruker Biospin AG, Fällanden, Switzerland) for the acquisition of a 2D INADEQUATE spectrum with a cryoprobe and F. Meyer for technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerhard Bringmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bringmann, G., Noll, T., Gulder, T. et al. Different polyketide folding modes converge to an identical molecular architecture. Nat Chem Biol 2, 429–433 (2006). https://doi.org/10.1038/nchembio805

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing