Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli

Abstract

Nonribosomal peptides (NRPs) are a class of microbial secondary metabolites that have a wide variety of medicinally important biological activities, such as antibiotic (vancomycin), immunosuppressive (cyclosporin A), antiviral (luzopeptin A) and antitumor (echinomycin and triostin A) activities1,2. However, many microbes are not amenable to cultivation and require time-consuming empirical optimization of incubation conditions for mass production of desired secondary metabolites for clinical and commercial use3. Therefore, a fast, simple system for heterologous production of natural products is much desired. Here we show the first example of the de novo total biosynthesis of biologically active forms of heterologous NRPs in Escherichia coli. Our system can serve not only as an effective and flexible platform for large-scale preparation of natural products from simple carbon and nitrogen sources, but also as a general tool for detailed characterizations and rapid engineering of biosynthetic pathways for microbial syntheses of novel compounds and their analogs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The echinomycin biosynthetic cluster from S. lasaliensis.
Figure 2: LC-MS analyses of Ecm18-catalyzed thioacetal formation.
Figure 3: Chemical characteristic spectra of compound 1 produced by the engineered E. coli strain.
Figure 4: Chemical characteristic spectra of compound 2 produced by the engineered E. coli strain.

Similar content being viewed by others

References

  1. Schwarzer, D., Finking, R. & Marahiel, M.A. Nonribosomal peptides: from genes to products. Nat. Prod. Rep. 20, 275–287 (2003).

    Article  CAS  Google Scholar 

  2. Boger, D.L., Ichikawa, S., Tse, W.C., Hedrick, M.P. & Jin, Q. Total syntheses of thiocoraline and BE-22179 and assessment of their DNA binding and biological properties. J. Am. Chem. Soc. 123, 561–568 (2001).

    Article  CAS  Google Scholar 

  3. Shuler, M.L. Bioreactor engineering as an enabling technology to tap biodiversity. The case of taxol. Ann. NY Acad. Sci. 745, 455–461 (1994).

    Article  CAS  Google Scholar 

  4. Steinerova, N. et al. Production of quinomycin A in Streptomyces lasaliensis. Folia Microbiol. (Praha) 32, 1–5 (1987).

    Article  CAS  Google Scholar 

  5. Reid, D.G., Doddrell, D.M., Williams, D.H. & Fox, K.R. A 15N nuclear magnetic resonance study of the biosynthesis of quinoxaline antibiotics. Biochim. Biophys. Acta 798, 111–114 (1984).

    Article  CAS  Google Scholar 

  6. Chen, H., Hubbard, B.K., O'Connor, S.E. & Walsh, C.T. Formation of beta-hydroxy histidine in the biosynthesis of nikkomycin antibiotics. Chem. Biol. 9, 103–112 (2002).

    Article  CAS  Google Scholar 

  7. Kurnasov, O. et al. Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol. Lett. 227, 219–227 (2003).

    Article  CAS  Google Scholar 

  8. Schmoock, G. et al. Functional cross-talk between fatty acid synthesis and nonribosomal peptide synthesis in quinoxaline antibiotic-producing streptomycetes. J. Biol. Chem. 280, 4339–4349 (2005).

    Article  CAS  Google Scholar 

  9. Trauger, J.W., Kohli, R.M., Mootz, H.D., Marahiel, M.A. & Walsh, C.T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407, 215–218 (2000).

    Article  CAS  Google Scholar 

  10. Cornish, A., Waring, M.J. & Nolan, R.D. Conversion of triostins to quinomycins by protoplasts of Streptomyces echinatus. J. Antibiot. (Tokyo) 36, 1664–1670 (1983).

    Article  CAS  Google Scholar 

  11. Takahashi, K., Koshino, H., Esumi, Y., Tsuda, E. & Kurosawa, K. SW-163C and E novel antitumor depsipeptides produced by Streptomyces sp.II. Structure elucidation. J. Antibiot. (Tokyo) 54, 622–627 (2001).

    Article  CAS  Google Scholar 

  12. Rance, M.J. et al. UK-63,052 complex, new quinomycin antibiotics from Streptomyces braegensis subsp. japonicus; taxonomy, fermentation, isolation, characterisation and antimicrobial activity. J. Antibiot. (Tokyo) 42, 206–217 (1989).

    Article  CAS  Google Scholar 

  13. Barrett, A.G., Hamprecht, D., White, A.J. & Williams, D.J. Iterative cyclopropanation: a concise strategy for the total synthesis of the hexacyclopropane cholesteryl ester transfer protein inhibitor U-106305. J. Am. Chem. Soc. 119, 8608–8615 (1997).

    Article  CAS  Google Scholar 

  14. Van Lanen, S.G. & Iwata-Reuyl, D. Kinetic mechanism of the tRNA-modifying enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA). Biochemistry 42, 5312–5320 (2003).

    Article  CAS  Google Scholar 

  15. Ciardelli, T.L., Chakravarty, P.K. & Olsen, R.K. Des-N-tetramethyltriostin A and bis-L-seryldes-N-tetramethyltriostin A, synthetic analogues of the quinoxaline antibiotics. J. Am. Chem. Soc. 100, 7684–7690 (1978).

    Article  CAS  Google Scholar 

  16. Lambalot, R.H. et al. A new enzyme superfamily - the phosphopantetheinyl transferases. Chem. Biol. 3, 923–936 (1996).

    Article  CAS  Google Scholar 

  17. Sørensen, H.P. & Mortensen, K.K. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 115, 113–128 (2005).

    Article  Google Scholar 

  18. Lau, J., Tran, C., Licari, P. & Galazzo, J. Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxyerythronolide B in Escherichia coli. J. Biotechnol. 110, 95–103 (2004).

    Article  CAS  Google Scholar 

  19. Furuya, K. & Hutchinson, C.R. The DrrC protein of Streptomyces peucetius, a UvrA-like protein, is a DNA-binding protein whose gene is induced by daunorubicin. FEMS Microbiol. Lett. 168, 243–249 (1998).

    Article  CAS  Google Scholar 

  20. Neidle, S., Pearl, L.H. & Skelly, J.V. DNA structure and perturbation by drug binding. Biochem. J. 243, 1–13 (1987).

    Article  CAS  Google Scholar 

  21. Royo, J.L., Moreno-Ruiz, E., Cebolla, A. & Santero, E. Stable long-term indigo production by overexpression of dioxygenase genes using a chromosomal integrated cascade expression circuit. J. Biotechnol. 116, 113–124 (2005).

    Article  CAS  Google Scholar 

  22. Watanabe, K., Rude, M.A., Walsh, C.T. & Khosla, C. Engineered biosynthesis of an ansamycin polyketide precursor in Escherichia coli. Proc. Natl. Acad. Sci. USA 100, 9774–9778 (2003).

    Article  CAS  Google Scholar 

  23. Peiru, S., Menzella, H.G., Rodriguez, E., Carney, J. & Gramajo, H. Production of the potent antibacterial polyketide erythromycin C in Escherichia coli. Appl. Environ. Microbiol. 71, 2539–2547 (2005).

    Article  CAS  Google Scholar 

  24. Pfeifer, B.A., Wang, C.C., Walsh, C.T. & Khosla, C. Biosynthesis of yersiniabactin, a complex polyketide-nonribosomal peptide, using Escherichia coli as a heterologous host. Appl. Environ. Microbiol. 69, 6698–6702 (2003).

    Article  CAS  Google Scholar 

  25. Watanabe, K., Wang, C.C., Boddy, C.N., Cane, D.E. & Khosla, C. Understanding substrate specificity of polyketide synthase modules by generating hybrid multimodular synthases. J. Biol. Chem. 278, 42020–42026 (2003).

    Article  CAS  Google Scholar 

  26. Gruenewald, S., Mootz, H.D., Stehmeier, P. & Stachelhaus, T. In vivo production of artificial nonribosomal peptide products in the heterologous host Escherichia coli. Appl. Environ. Microbiol. 70, 3282–3291 (2004).

    Article  CAS  Google Scholar 

  27. Cheung, H.T. et al. The conformation of echinomycin in solution. J. Am. Chem. Soc. 100, 46–54 (1978).

    Article  CAS  Google Scholar 

  28. Blake, T.J., Kalman, J.R. & Williams, D.H. Two symmetrical conformations of the triostin antibiotics in solution. Tetrahedr. Lett. 18, 2621–2624 (1977).

    Article  Google Scholar 

  29. McGinnis, S. & Madden, T.L. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, W20–W25 (2004).

    Article  CAS  Google Scholar 

  30. Dell, A. et al. Structure revision of the antibiotic echinomycin. J. Am. Chem. Soc. 97, 2497–2502 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.J. Waring and M. Searcey for kindly providing the authentic reference samples of triostin A and TANDEM, respectively, and H. Kinashi (Hiroshima University) for advice in handling the streptomycete linear plasmid. This work was financially supported by Grant-in-Aids for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (A) 17208010 (H.O.), by Uehara Memorial Foundation PK220920 (H.O.), by National Institute of General Medical Sciences grant GM 075857-01 (C.C.C.W.) and by American Cancer Society grant RSG-06-010-01-CDD (C.C.C.W.). K.W. is a recipient of fellowships from the Japan Antibiotics Research Association, Pfizer Infectious Disease Foundation and the Agricultural Chemical Research Foundation. A.M. is a recipient of JSPS predoctoral fellowship 177009104.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenji Watanabe or Hideaki Oikawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

SDS-PAGE analysis of the purified E. coli-produced echinomycin biosynthetic proteins. (PDF 2970 kb)

Supplementary Fig. 2

Maps of the plasmid-borne echinomycin biosynthetic gene cluster. (PDF 84 kb)

Supplementary Fig. 3

Assays for checking the maintenance and stability of the plasmids carrying the echinomycin biosynthetic cluster in E. coli DH5α. (PDF 2878 kb)

Supplementary Fig. 4

Chemical characteristic spectra of the authentic reference for echinomycin. (PDF 161 kb)

Supplementary Fig. 5

Chemical characteristic spectra of the authentic reference for triostin A. (PDF 167 kb)

Supplementary Methods

Methods used for echinomycin biosynthetic cluster isolation and a table of the sequences of the primers used in this manuscript. (PDF 147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Hotta, K., Praseuth, A. et al. Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli. Nat Chem Biol 2, 423–428 (2006). https://doi.org/10.1038/nchembio803

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing