Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish

Abstract

We examined the role of angiogenesis and the need for receptor signaling using chemical inhibition of the vascular endothelial growth factor receptor in the adult zebrafish tail fin. Using a small-molecule inhibitor, we were able to exert precise control over blood vessel regeneration. An angiogenic limit to tissue regeneration was determined, as avascular tissue containing skin, pigment, neuronal axons and bone precursors could regenerate up to about 1 mm. This indicates that tissues can regenerate without direct interaction with endothelial cells and at a distance from blood supply. We also investigated whether the effects of chemical inhibition could be enhanced in zebrafish vascular mutants. We found that adult zebrafish, heterozygous for a mutation in the critical receptor effector phospholipase Cγ1, show a greater sensitivity to chemical inhibition. This study illustrates the utility of the adult zebrafish as a new model system for receptor signaling and chemical biology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Zebrafish tail fin vasculature and ease of adult angiography.
Figure 2: Tail fin vessel regeneration is sensitive to VEGFR inhibition.
Figure 3: Molecular analysis of regenerative angiogenesis.
Figure 4: Caudal fin regrowth is limited by angiogenesis.
Figure 5: Examination of tissues and cell types in the zebrafish tail fin.
Figure 6: Effectiveness of chemical inhibitors on regenerative angiogenesis.
Figure 7: Chemical analysis of regenerative angiogenesis in zebrafish lines.

References

  1. 1

    Chanda, S.K. Fulfilling the promise: drug discovery in the post-genomic era. Drug Discov. Today 8, 168–174 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Lenz, G.R. Chemical ligands, genomics, and drug discovery. Drug Discov. Today 5, 145–156 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Peterson, R.T., Link, B.A., Dowling, J.E. & Schreiber, S.L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 97, 12965–12969 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Zon, L.I. & Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Poss, K.D., Keating, M.T. & Nechiporuk, A. Tales of regeneration in zebrafish. Dev. Dyn. 226, 202–210 (2003).

    Article  Google Scholar 

  7. 7

    Akimenko, M.A., Mari-Beffa, M., Becerra, J. & Geraudie, J. Old questions, new tools, and some answers to the mystery of fin regeneration. Dev. Dyn. 226, 190–201 (2003).

    Article  Google Scholar 

  8. 8

    Reginelli, A.D., Wang, Y.Q., Sassoon, D. & Muneoka, K. Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development 121, 1065–1076 (1995).

    CAS  PubMed  Google Scholar 

  9. 9

    Han, M., Yang, X., Farrington, J.E. & Muneoka, K. Digit regeneration is regulated by Msx1 and BMP4 in fetal mice. Development 130, 5123–5132 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Akimenko, M.A., Johnson, S.L., Westerfield, M. & Ekker, M. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121, 347–357 (1995).

    CAS  PubMed  Google Scholar 

  11. 11

    Laforest, L. et al. Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays. Development 125, 4175–4184 (1998).

    CAS  PubMed  Google Scholar 

  12. 12

    Nechiporuk, A. & Keating, M.T. A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration. Development 129, 2607–2617 (2002).

    CAS  PubMed  Google Scholar 

  13. 13

    Keating, M.T. Genetic approaches to disease and regeneration. Phil. Trans. R. Soc. Lond. B 359, 795–798 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Ferrara, N., Gerber, H.P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Bold, G. et al. New anilinophthalazines as potent and orally well absorbed inhibitors of the VEGF receptor tyrosine kinases useful as antagonists of tumor-driven angiogenesis. J. Med. Chem. 43, 2310–2323 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Wood, J.M. et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60, 2178–2189 (2000).

    CAS  PubMed  Google Scholar 

  17. 17

    Poss, K.D., Wilson, L.G. & Keating, M.T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Huang, C.C., Lawson, N.D., Weinstein, B.M. & Johnson, S.L. reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins. Dev. Biol. 264, 263–274 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Lawson, N. & Weinstein, B. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Manley, P.W. et al. Advances in the structural biology, design and clinical development of VEGF-R kinase inhibitors for the treatment of angiogenesis. Biochim. Biophys. Acta 1697, 17–27 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Chan, J., Bayliss, P.E., Wood, J.M. & Roberts, T.M. Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell 1, 257–267 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Parichy, D.M., Rawls, J.F., Pratt, S.J., Whitfield, T.T. & Johnson, S.L. Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development 126, 3425–3436 (1999).

    CAS  PubMed  Google Scholar 

  24. 24

    McKim, J., Schmieder, P. & Veith, G. Absorption dynamics of organic chemical transport across trout gills as related to octanol-water partition coefficient. Toxicol. Appl. Pharmacol. 77, 1–10 (1985).

    CAS  Article  Google Scholar 

  25. 25

    Poss, K.D. et al. Roles for Fgf signaling during zebrafish fin regeneration. Dev. Biol. 222, 347–358 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Quint, E. et al. Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. Proc. Natl. Acad. Sci. USA 99, 8713–8718 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Metcalfe, W.K., Myers, P.Z., Trevarrow, B., Bass, M.B. & Kimmel, C.B. Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development 110, 491–504 (1990).

    CAS  PubMed  Google Scholar 

  28. 28

    Johnson, S.L. & Weston, J.A. Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration. Genetics 141, 1583–1595 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299, 890–893 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Gerhardt, H. & Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314, 15–23 (2003).

    Article  Google Scholar 

  31. 31

    Cleaver, O. & Melton, D.A. Endothelial signaling during development. Nat. Med. 9, 661–668 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Cross, L.M., Cook, M.A., Lin, S., Chen, J.N. & Rubinstein, A.L. Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay. Arterioscler. Thromb. Vasc. Biol. 23, 911–912 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Liao, A.T. et al. Inhibition of constitutively active forms of mutant kit by multitargeted indolinone tyrosine kinase inhibitors. Blood 100, 585–593 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Fabian, M.A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Arap, W. et al. Steps toward mapping the human vasculature by phage display. Nat. Med. 8, 121–127 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Chi, J.T. et al. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. USA 100, 10623–10628 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Lawson, N.D., Mugford, J.W., Diamond, B.A. & Weinstein, B.M. Phospholipase Cγ-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev. 17, 1346–1351 (2003).

    CAS  Article  Google Scholar 

  38. 38

    Weinstein, B.M., Stemple, D.L., Driever, W. & Fishman, M.C. Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat. Med. 1, 1143–1147 (1995).

    CAS  Article  Google Scholar 

  39. 39

    Zhong, T.P. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287, 1820–1824 (2000).

    CAS  Article  Google Scholar 

  40. 40

    Stainier, D.Y., Weinstein, B.M., Detrich, H.W., III, Zon, L.I. & Fishman, M.C. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121, 3141–3150 (1995).

    CAS  PubMed  Google Scholar 

  41. 41

    Peterson, R.T. et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotechnol. 22, 595–599 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Zhong, T.P. Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220 (2001).

    CAS  Article  Google Scholar 

  43. 43

    Takahashi, T., Yamaguchi, S., Chida, K. & Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768–2778 (2001).

    CAS  Article  Google Scholar 

  44. 44

    Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N. & Shibuya, M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl. Acad. Sci. USA 102, 1076–1081 (2005).

    CAS  Article  Google Scholar 

  45. 45

    Liao, W. et al. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. Development 124, 381–389 (1997).

    CAS  PubMed  Google Scholar 

  46. 46

    Westerfield, M. The Zebrafish Book: Guide for the Laboratory Use of Zebrafish (Danio rerio) (Univ. of Oregon Press, Eugene, Oregon, USA, 1995).

    Google Scholar 

  47. 47

    Morikawa, S. et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 160, 985–1000 (2002).

    Article  Google Scholar 

  48. 48

    Chan, J. et al. Morphogenesis of prechordal plate and notochord requires intact Eph/ephrin B signaling. Dev. Biol. 234, 470–482 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Folkman, N. Lawson, R. Peterson, J. Mably, F. Serluca, G. Naumov and C. Barnes for helpful discussions and/or critical reading of the manuscript. We acknowledge M. Lin and R. Bolcome for technical assistance with zebrafish care and maintenance and K. Johnson for help with graphics. We thank L. Trakimas for electron microscopy work. This work was supported in part by sponsored research agreements from Novartis to T.M.R. and J.C. and by an award from the Sidney Kimmel Foundation for Cancer Research to J.C. J.C is a Kimmel Cancer Scholar.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joanne Chan.

Ethics declarations

Competing interests

J.C. and T.M.R. receive support for research programs from Novartis. T.M.R. has consulting relationships with Upstate Biotechnology Inc. and Novartis Pharmaceuticals Inc. J.W. and T.O. are employees of Novartis while engaged in this research project. K.B. and M.K. are current employees of Novartis whose employment began after the completion of their involvement in this project. In addition, J.W., T.O and M.K. have personal financial interests in Novartis Pharmaceuticals Inc.

Supplementary information

Supplementary Fig. 1

Nascent vessels are more susceptible to VEGFR inhibition. (PDF 6147 kb)

Supplementary Fig. 2

Real-time PCR analysis of the expression of selected genes during fin regeneration and baseline levels. (PDF 1026 kb)

Supplementary Table 1

Targeted genes and primers used for real time PCR analysis. (PDF 50 kb)

Supplementary Table 2

Summary of statistical evaluation of the effect of genetic background and PTK787 treatment on zebrafish tail fin regeneration. (PDF 43 kb)

Supplementary Video 1

Zebrafish movie showing caudal fin circulation. (MOV 8844 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bayliss, P., Bellavance, K., Whitehead, G. et al. Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat Chem Biol 2, 265–273 (2006). https://doi.org/10.1038/nchembio778

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing