Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

How pathogenic bacteria evade mammalian sabotage in the battle for iron

Abstract

Many bacteria, including numerous human pathogens, synthesize small molecules known as siderophores to scavenge iron. Enterobactin, a siderophore produced by enteric bacteria, is surprisingly ineffective as an iron-scavenging agent for bacteria growing in animals because of its hydrophobicity and its sequestration by the mammalian protein siderocalin, a component of the innate immune system. However, pathogenic strains of Escherichia coli and Salmonella use enzymes encoded by the iroA gene cluster to tailor enterobactin by glycosylation and linearization. The resulting modified forms of enterobactin, known as salmochelins, can evade siderocalin and are less hydrophobic than enterobactin, restoring this siderophore's iron-scavenging ability in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5: Processing of Ent by iroA-encoded enzymes.
Figure 6: Overview of the microcin E492 system.

Similar content being viewed by others

References

  1. Posey, J.E. & Gherardini, F.C. Lack of a role for iron in the Lyme disease pathogen. Science 288, 1651–1653 (2000).

    CAS  PubMed  Google Scholar 

  2. Weinberg, E.D. The Lactobacillus anomaly: total iron abstinence. Perspect. Biol. Med. 40, 578–583 (1997).

    CAS  PubMed  Google Scholar 

  3. Raymond, K.N., Dertz, E.A. & Kim, S.S. Enterobactin: an archetype for microbial iron transport. Proc. Natl Acad. Sci. USA 100, 3584–3588 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Andrews, S.C., Robinson, A.K. & Rodriguez-Quinones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).

    CAS  PubMed  Google Scholar 

  5. Crosa, J.H. & Walsh, C.T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66, 223–249 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gehring, A.M., Mori, I. & Walsh, C.T. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37, 2648–2659 (1998).

    CAS  PubMed  Google Scholar 

  7. Walsh, C., Liu, J., Rusnak, F. & Sakaitani, M. Molecular studies on enzymes in chorismate metabolism and the enterobactin biosynthetic pathway. Chem. Rev. 90, 1105–1129 (1990).

    CAS  Google Scholar 

  8. Lambalot, R.H. et al. A new enzyme superfamily - the phosphopantetheinyl transferases. Chem. Biol. 3, 923–936 (1996).

    CAS  PubMed  Google Scholar 

  9. Furrer, J.L., Sanders, D.N., Hook-Barnard, I.G. & McIntosh, M.A. Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol. Microbiol. 44, 1225–1234 (2002).

    CAS  PubMed  Google Scholar 

  10. Bleuel, C. et al. TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. J. Bacteriol. 187, 6701–6707 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Crosa, J.H., Mey, A.R. & Payne, S.M. Iron Transport in Bacteria. (ASM Press, Washington, DC, 2004)

    Google Scholar 

  12. Annamalai, R., Jin, B., Cao, Z., Newton, S.M. & Klebba, P.E. Recognition of ferric catecholates by FepA. J. Bacteriol. 186, 3578–3589 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Buchanan, S.K. et al. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol. 6, 56–63 (1999).

    CAS  PubMed  Google Scholar 

  14. Faraldo-Gomez, J.D. & Sansom, M.S. Acquisition of siderophores in gram-negative bacteria. Nat. Rev. Mol. Cell Biol. 4, 105–116 (2003).

    CAS  PubMed  Google Scholar 

  15. Lin, H., Fischbach, M.A., Liu, D.R. & Walsh, C.T. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J. Am. Chem. Soc. 127, 11075–11084 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hantke, K. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4, 172–177 (2001).

    CAS  PubMed  Google Scholar 

  17. Harris, W.R. et al. Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes. J. Am. Chem. Soc. 101, 6097–6104 (1979).

    CAS  Google Scholar 

  18. Challis, G.L. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem 6, 601–611 (2005).

    CAS  PubMed  Google Scholar 

  19. Harris, W.R., Carrano, C.J. & Raymond, K.N. Coordination chemistry of microbial iron transport compounds. 16. Isolation, characterization, and formation constants of ferric aerobactin. J. Am. Chem. Soc. 110, 2722–2727 (1979).

    Google Scholar 

  20. Brock, J.H., Williams, P.H., Liceaga, J. & Wooldridge, K.G. Relative availability of transferrin-bound iron and cell-derived iron to aerobactin-producing and enterochelin-producing strains of Escherichia coli and to other microorganisms. Infect. Immun. 59, 3185–3190 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Der Vartanian, M. Differences in excretion and efficiency of the aerobactin and enterochelin siderophores in a bovine pathogenic strain of Escherichia coli. Infect. Immun. 56, 413–418 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Konopka, K., Bindereif, A. & Neilands, J.B. Aerobactin-mediated utilization of transferrin iron. Biochemistry 21, 6503–6508 (1982).

    CAS  PubMed  Google Scholar 

  23. Williams, P.H. & Carbonetti, N.H. Iron, siderophores, and the pursuit of virulence: independence of the aerobactin and enterochelin iron uptake systems in Escherichia coli. Infect. Immun. 51, 942–947 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Goetz, D.H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043 (2002).

    CAS  PubMed  Google Scholar 

  25. Holmes, M.A., Paulsene, W., Jide, X., Ratledge, C. & Strong, R.K. Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure 13, 29–41 (2005).

    CAS  PubMed  Google Scholar 

  26. Flo, T.H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004).

    CAS  PubMed  Google Scholar 

  27. Devireddy, L.R., Gazin, C., Zhu, X. & Green, M.R. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123, 1293–1305 (2005).

    CAS  PubMed  Google Scholar 

  28. Devireddy, L.R., Teodoro, J.G., Richard, F.A. & Green, M.R. Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293, 829–834 (2001).

    CAS  PubMed  Google Scholar 

  29. Luo, M. et al. Enzymatic tailoring of the bacterial siderophore enterobactin alters membrane partitioning and iron acquisition. ACS Chem. Biol. (in the press).

  30. Konopka, K. & Neilands, J.B. Effect of serum albumin on siderophore-mediated utilization of transferrin iron. Biochemistry 23, 2122–2127 (1984).

    CAS  PubMed  Google Scholar 

  31. Bister, B. et al. The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17, 471–481 (2004).

    CAS  PubMed  Google Scholar 

  32. Koczura, R. & Kaznowski, A. Occurrence of the Yersinia high-pathogenicity island and iron uptake systems in clinical isolates of Klebsiella pneumoniae. Microb. Pathog. 35, 197–202 (2003).

    CAS  PubMed  Google Scholar 

  33. Baumler, A.J. et al. Identification of a new iron regulated locus of Salmonella typhi. Gene 183, 207–213 (1996).

    CAS  PubMed  Google Scholar 

  34. Baumler, A.J. et al. IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica. J. Bacteriol. 180, 1446–1453 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Foster, J.W. & Hall, H.K. Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J. Bacteriol. 174, 4317–4323 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Patzer, S.I., Baquero, M.R., Bravo, D., Moreno, F. & Hantke, K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149, 2557–2570 (2003).

    CAS  PubMed  Google Scholar 

  37. McClelland, M. et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856 (2001).

    CAS  PubMed  Google Scholar 

  38. Welch, R.A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 99, 17020–17024 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Grozdanov, L. et al. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J. Bacteriol. 186, 5432–5441 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Paulsen, I.T. et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299, 2071–2074 (2003).

    CAS  PubMed  Google Scholar 

  41. Dobrindt, U. et al. Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect. Immun. 70, 6365–6372 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sorsa, L.J., Dufke, S., Heesemann, J. & Schubert, S. Characterization of an iroBCDEN gene cluster on a transmissible plasmid of uropathogenic Escherichia coli: evidence for horizontal transfer of a chromosomal virulence factor. Infect. Immun. 71, 3285–3293 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Snyder, J.A. et al. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72, 6373–6381 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, Y.T. et al. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337, 189–198 (2004).

    CAS  PubMed  Google Scholar 

  45. Lagos, R. et al. Structure, organization and characterization of the gene cluster involved in the production of microcin E492, a channel-forming bacteriocin. Mol. Microbiol. 42, 229–243 (2001).

    CAS  PubMed  Google Scholar 

  46. Dean, C.R. & Poole, K. Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: involvement of a two-component regulatory system. Mol. Microbiol. 8, 1095–1103 (1993).

    CAS  PubMed  Google Scholar 

  47. Hantke, K., Nicholson, G., Rabsch, W. & Winkelmann, G. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc. Natl Acad. Sci. USA 100, 3677–3682 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, J. & Mushegian, A. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci. 12, 1418–1431 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Walsh, C., Freel Meyers, C.L. & Losey, H.C. Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming. J. Med. Chem. 46, 3425–3436 (2003).

    CAS  PubMed  Google Scholar 

  50. Fischbach, M.A., Lin, H., Liu, D.R. & Walsh, C.T. In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc. Natl Acad. Sci. USA 102, 571–576 (2005).

    CAS  PubMed  Google Scholar 

  51. Weymouth-Wilson, A.C. The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14, 99–110 (1997).

    CAS  PubMed  Google Scholar 

  52. Galm, U. et al. Antimicrobial and DNA gyrase-inhibitory activities of novel clorobiocin derivatives produced by mutasynthesis. Antimicrob. Agents Chemother. 48, 1307–1312 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schlunzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814–821 (2001).

    CAS  PubMed  Google Scholar 

  54. Lafitte, D. et al. DNA gyrase interaction with coumarin-based inhibitors: the role of the hydroxybenzoate isopentenyl moiety and the 5′-methyl group of the noviose. Biochemistry 41, 7217–7223 (2002).

    CAS  PubMed  Google Scholar 

  55. Janeway, C.A., Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  Google Scholar 

  56. Quiros, L.M., Aguirrezabalaga, I., Olano, C., Mendez, C. & Salas, J.A. Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Mol. Microbiol. 28, 1177–1185 (1998).

    CAS  PubMed  Google Scholar 

  57. Walsh, C.T. Posttranslational Modification of Proteins: Expanding Nature's Inventory (Roberts and Co., Greenwood Village, Colorado, 2006).

    Google Scholar 

  58. Bililign, T., Griffith, B.R. & Thorson, J.S. Structure, activity, synthesis and biosynthesis of aryl-C-glycosides. Nat. Prod. Rep. 22, 742–760 (2005).

    CAS  PubMed  Google Scholar 

  59. Hartmann, S. & Hofsteenge, J. Properdin, the positive regulator of complement, is highly C-mannosylated. J. Biol. Chem. 275, 28569–28574 (2000).

    CAS  PubMed  Google Scholar 

  60. Hofsteenge, J., Blommers, M., Hess, D., Furmanek, A. & Miroshnichenko, O. The four terminal components of the complement system are C-mannosylated on multiple tryptophan residues. J. Biol. Chem. 274, 32786–32794 (1999).

    CAS  PubMed  Google Scholar 

  61. Krieg, J. et al. C-Mannosylation of human RNase 2 is an intracellular process performed by a variety of cultured cells. J. Biol. Chem. 272, 26687–26692 (1997).

    CAS  PubMed  Google Scholar 

  62. Perez-Vilar, J., Randell, S.H. & Boucher, R.C. C-Mannosylation of MUC5AC and MUC5B Cys subdomains. Glycobiology 14, 325–337 (2004).

    CAS  PubMed  Google Scholar 

  63. Trefzer, A. et al. Function of glycosyltransferase genes involved in urdamycin A biosynthesis. Chem. Biol. 7, 133–142 (2000).

    CAS  PubMed  Google Scholar 

  64. McMullen, M.D. et al. Quantitative trait loci and metabolic pathways. Proc. Natl Acad. Sci. USA 95, 1996–2000 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhu, M., Valdebenito, M., Winkelmann, G. & Hantke, K. Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151, 2363–2372 (2005).

    CAS  PubMed  Google Scholar 

  66. Luo, M., Fadeev, E.A. & Groves, J.T. Membrane dynamics of the amphiphilic siderophore, acinetoferrin. J. Am. Chem. Soc. 127, 1726–1736 (2005).

    CAS  PubMed  Google Scholar 

  67. Ratledge, C. & Ewing, M. The occurrence of carboxymycobactin, the siderophore of pathogenic mycobacteria, as a second extracellular siderophore in Mycobacterium smegmatis. Microbiology 142, 2207–2212 (1996).

    CAS  PubMed  Google Scholar 

  68. Destoumieux-Garzon, D., Peduzzi, J. & Rebuffat, S. Focus on modified microcins: structural features and mechanisms of action. Biochimie 84, 511–519 (2002).

    CAS  PubMed  Google Scholar 

  69. Li, Y.M., Milne, J.C., Madison, L.L., Kolter, R. & Walsh, C.T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274, 1188–1193 (1996).

    CAS  PubMed  Google Scholar 

  70. Bayro, M.J. et al. Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. J. Am. Chem. Soc. 125, 12382–12383 (2003).

    CAS  PubMed  Google Scholar 

  71. Rosengren, K.J. et al. Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J. Am. Chem. Soc. 125, 12464–12474 (2003).

    CAS  PubMed  Google Scholar 

  72. Semenova, E., Yuzenkova, Y., Peduzzi, J., Rebuffat, S. & Severinov, K. Structure-activity analysis of microcinJ25: distinct parts of the threaded lasso molecule are responsible for interaction with bacterial RNA polymerase. J. Bacteriol. 187, 3859–3863 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wilson, K.A. et al. Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J. Am. Chem. Soc. 125, 12475–12483 (2003).

    CAS  PubMed  Google Scholar 

  74. Lagos, R., Wilkens, M., Vergara, C., Cecchi, X. & Monasterio, O. Microcin E492 forms ion channels in phospholipid bilayer membrane. FEBS Lett. 321, 145–148 (1993).

    CAS  PubMed  Google Scholar 

  75. Thomas, X. et al. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J. Biol. Chem. 279, 28233–28242 (2004).

    CAS  PubMed  Google Scholar 

  76. Lagos, R., Villanueva, J.E. & Monasterio, O. Identification and properties of the genes encoding microcin E492 and its immunity protein. J. Bacteriol. 181, 212–217 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Strahsburger, E., Baeza, M., Monasterio, O. & Lagos, R. Cooperative uptake of microcin E492 by receptors FepA, Fiu, and Cir and inhibition by the siderophore enterochelin and its dimeric and trimeric hydrolysis products. Antimicrob. Agents Chemother. 49, 3083–3086 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Schubert, S., Fischer, D. & Heesemann, J. Ferric enterochelin transport in Yersinia enterocolitica: molecular and evolutionary aspects. J. Bacteriol. 181, 6387–6395 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Trefzer, A. et al. Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic. Antimicrob. Agents Chemother. 46, 1174–1182 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratories is supported by National Institutes of Health grants AI042738 (to C.T.W.) and GM065400 (to D.R.L.), and by the Howard Hughes Medical Institute (D.R.L.). M.A.F. is supported by a predoctoral fellowship from the Hertz Foundation, and H.L. is supported by a postdoctoral fellowship from the Jane Coffin Childs Memorial Fund. We are grateful to K. Hantke (Universität Tübingen) for helpful discussions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischbach, M., Lin, H., Liu, D. et al. How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat Chem Biol 2, 132–138 (2006). https://doi.org/10.1038/nchembio771

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing