Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology

Abstract

Metabolic 'oligosaccharide engineering' methods based on N-acetyl-D-mannosamine (ManNAc) analogs allow the glycocalyx of living cells to be remodeled1,2,3. Herein we report the analog Ac5ManNTGc (1) that enables thiols to be expressed in surface sialic acids. By locating this versatile functional group on the outer periphery of normally nonadhesive human Jurkat cells, we obtained spontaneous cell-cell clustering and attachment to complementary maleimide-derivatized substrates. When analyzed in human embryoid body–derived (hEBD) stem cells, Ac5ManNTGc induced β-catenin expression and altered cell morphology, consistent with neuronal differentiation. Notably, these effects were modulated by the growth substrate of the cells, with a stronger response observed on a gold surface than on glass. Together, these results establish sugar analogs as small-molecule tools for tissue engineering by providing a method for attaching cells to scaffolds via their surface carbohydrates as well as offering a means to influence stem cell fates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface display of thiol-bearing sialic acids.
Figure 2: Analog-mediated cell clustering and attachment to complementary surfaces.
Figure 3: Metabolic incorporation of Ac5ManNTGc (1) in hEBD-LVEC cells.
Figure 4: Analogs alter the morphology of hEBD-LVEC cells.
Figure 5: Upregulation of β-catenin in hEBD-LVEC cells induced by 1.

Similar content being viewed by others

References

  1. Kayser, H. et al. Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992).

    CAS  PubMed  Google Scholar 

  2. Mahal, L.K., Yarema, K.J. & Bertozzi, C.R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    Article  CAS  Google Scholar 

  3. Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C. & Reutter, W. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11, 11R–18R (2001).

    Article  CAS  Google Scholar 

  4. Yarema, K.J., Mahal, L.K., Bruehl, R.E., Rodriguez, E.C. & Bertozzi, C.R. Metabolic delivery of ketone groups to sialic acid residues. Application to cell surface glycoform engineering. J. Biol. Chem. 273, 31168–31179 (1998).

    Article  CAS  Google Scholar 

  5. Nakashima, I. et al. Redox-linked signal transduction pathways for protein tyrosine kinase activation. Antioxid. Redox Signal. 4, 517–531 (2002).

    Article  CAS  Google Scholar 

  6. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  Google Scholar 

  7. Hou, D.-X., Arimura, M., Fukuda, M., Oka, T. & Fujii, M. Expression of cell adhesion molecule and albumin genes in primary culture of rat hepatocytes. Cell Biol. Int. 25, 239–244 (2001).

    Article  CAS  Google Scholar 

  8. De Bank, P.A., Kellam, B., Kendall, D.A. & Shakesheff, K.M. Surface engineering of living myoblasts via selective periodate oxidation. Biotechnol. Bioeng. 81, 800–808 (2003).

    Article  CAS  Google Scholar 

  9. Collins, B.E., Fralich, T.J., Itonori, S., Ichikawa, Y. & Schnaar, R.L. Conversion of cellular sialic acid expression from N-acetyl- to N-glycolylneuraminic acid using a synthetic precursor, N-glycolylmannosamine pentaacetate: inhibition of myelin-associated glycoprotein binding to neural cells. Glycobiology 10, 11–20 (2000).

    Article  CAS  Google Scholar 

  10. Ratner, D.M. et al. Probing protein–carbohydrate interactions with microarrays of synthetic oligosaccharides. ChemBioChem 5, 379–383 (2004).

    Article  CAS  Google Scholar 

  11. Thorsen, T., Maerkl, S.J. & Quake, S.R. Microfluidic large scale integration. Science 298, 580–584 (2002).

    Article  CAS  Google Scholar 

  12. Langer, R. & Tirrell, D.A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    Article  CAS  Google Scholar 

  13. Edwards, B.E., Gearhart, J.D. & Wallach, E.E. The human pluripotent stem cell: impact on medicine and society. Fertil. Steril. 74, 1–7 (2000).

    Article  CAS  Google Scholar 

  14. Shamblott, M.J. et al. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc. Natl. Acad. Sci. USA 98, 113–118 (2001).

    Article  CAS  Google Scholar 

  15. Jaiswal, J.K., Goldman, E.R., Mattoussi, H. & Simon, S. Use of quantum dots for live cell imaging. Nat. Methods 1, 73–78 (2004).

    Article  Google Scholar 

  16. Martin, M.J., Muotri, A., Gage, F. & Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232 (2005).

    Article  CAS  Google Scholar 

  17. Teo, J.-L., Ma, H., Nguyen, C., Lam, C. & Kahn, M. Specific inhibition of CBP/β-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation. Proc. Natl. Acad. Sci. USA 102, 12171–12176 (2005).

    Article  CAS  Google Scholar 

  18. Teo, R., Möhrlen, F., Plickert, G., Müller, W.A. & Frank, U. An evolutionary conserved role of Wnt signaling in stem cell fate decision. Dev. Biol. 289, 91–99 (2006).

    Article  CAS  Google Scholar 

  19. Kasai, M., Satoh, K. & Akiyama, T. Wnt signaling regulates the sequential onset of neurogenesis and gliogenesis via induction of BMPs. Genes Cells 10, 777–783 (2005).

    Article  CAS  Google Scholar 

  20. Ille, F. & Sommer, L. Wnt signaling: multiple functions in neural development. CMLS Cell. Mol. Life Sci. 62, 1100–1108 (2005).

    Article  CAS  Google Scholar 

  21. Liu, J. et al. A small-molecule agonist of the Wnt signaling pathway. Angew. Chem. Int. Edn. Engl. 44, 1987–1990 (2005).

    Article  CAS  Google Scholar 

  22. Turner, N., Armitage, M., Butler, R. & Ireland, G. An in vitro model to evaluate cell adhesion to metals used in implantation shows significant differences between palladium and gold or platinum. Cell Biol. Int. 28, 541–547 (2004).

    Article  CAS  Google Scholar 

  23. Barbosa, J.N., Barbosa, M.A. & Águas, A.P. Inflammatory responses and cell adhesion to self-assembled monolayers of alkanethiolates on gold. Biomaterials 25, 2557–2563 (2004).

    Article  CAS  Google Scholar 

  24. Yousaf, M.N., Houseman, B.T. & Mrksich, M. Using electroactive substrates to pattern the attachment of two different cell populations. Proc. Natl. Acad. Sci. USA 98, 5992–5996 (2001).

    Article  CAS  Google Scholar 

  25. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. & Ingber, D.E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  26. Vats, A., Bielby, R., Tolley, N., Nerem, R. & Polak, J. Stem cells. Lancet 366, 592–602 (2005).

    Article  CAS  Google Scholar 

  27. Orner, B.P., Derda, R., Lewis, R.L., Thomson, J.A. & Kiessling, L.L. Arrays for the combinatorial exploration of cell adhesion. J. Am. Chem. Soc. 126, 10808–10809 (2004).

    Article  CAS  Google Scholar 

  28. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  Google Scholar 

  29. Ding, S. & Schultz, P.G. A role for chemistry in stem cell biology. Nat. Biotechnol. 22, 833–840 (2004).

    Article  CAS  Google Scholar 

  30. Lemieux, G.A. & Bertozzi, C.R. Modulating cell surface immunoreactivity by metabolic induction of unnatural carbohydrate antigens. Chem. Biol. 8, 265–275 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Konstantopoulos for flow cytometer access, P. Pawar for technical assistance in FACS experiments, J.D. Gearhart and M.J. Shamblott for the kind gift of EBD LVEC cells, T.H. Wang for the kind gift of QD655-streptavidin conjugate, and J.M. McCaffery and E. Perkins of the Integrated Imaging Facility (Johns Hopkins University Department of Biology) for help with confocal microscopy. This work was supported by funding from the Arnold and Mabel Beckman Foundation, the US National Institutes of Health (1R01CA112314-01A1) and the National Science Foundation (QSB-0425668).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J Yarema.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Concentration and time course of CST expression. (PDF 72 kb)

Supplementary Fig. 2

Dose dependency of CST expression on 1. (PDF 230 kb)

Supplementary Scheme 1

Synthesis of 1. (PDF 52 kb)

Supplementary Scheme 2

Synthesis of 2. (PDF 50 kb)

Supplementary Scheme 3

Labeling of cell-surface thiols. (PDF 51 kb)

Supplementary Scheme 4

Effect of TCEP treatment. (PDF 43 kb)

Supplementary Methods (PDF 488 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampathkumar, SG., Li, A., Jones, M. et al. Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology. Nat Chem Biol 2, 149–152 (2006). https://doi.org/10.1038/nchembio770

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing