Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Analyzing the dynamic bacterial glycome with a lectin microarray approach

Abstract

Glycosylation of bacterial cell surfaces is emerging as a critical factor in symbiosis, pathogenesis, cell-cell interactions and immune evasion1,2,3. The lack of high-throughput analytical tools to examine bacterial glycans has been a major obstacle to the field and has hindered closer examination of the dynamics of carbohydrate variation. We have recently developed a lectin microarray for the analysis of glycoproteins4. Herein we present a rapid analytical system based on this technology for the examination of bacterial glycans. The glycosylation pattern observed distinguishes closely related Escherichia coli strains from one another, providing a facile means of fingerprinting bacteria. In addition, dynamic alterations in the carbohydrate coat of a pathogenic E. coli strain are readily observed. The fast evaluation of real-time alterations in surface-carbohydrate epitopes allows examination of the dynamic role of bacterial sugars in response to external stimuli such as the immune system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lectin array.
Figure 2: Glycopatterns of pathogenic and nonpathogenic bacterial strains.
Figure 3: Carbohydrate inhibition.
Figure 4: Growth-dependent variation of neonatal meningitis E. coli strain RS218 glycosylation.

Similar content being viewed by others

References

  1. Schmidt, M.A., Riley, L.W. & Benz, I. Sweet new world: glycoproteins in bacterial pathogens. Trends Microbiol. 11, 554–561 (2003).

    Article  CAS  Google Scholar 

  2. Lerouge, I. & Vanderleyden, J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol. Rev. 26, 17–47 (2002).

    Article  CAS  Google Scholar 

  3. Weintraub, A. Immunology of bacterial polysaccharide antigens. Carbohydr. Res. 338, 2539–2547 (2003).

    Article  CAS  Google Scholar 

  4. Pilobello, K.T., Krishnamoorthy, L., Slawek, D. & Mahal, L.K. Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem 6, 985–989 (2005).

    Article  CAS  Google Scholar 

  5. Caroff, M. & Karibian, D. Structure of bacterial lipopolysaccharides. Carbohydr. Res. 338, 2431–2447 (2003).

    Article  CAS  Google Scholar 

  6. van der Woude, M.W. & Baumler, A.J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17, 581–611 (2004).

    Article  CAS  Google Scholar 

  7. Whitfield, C. & Roberts, I.S. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol. Microbiol. 31, 1307–1319 (1999).

    Article  CAS  Google Scholar 

  8. Roberts, I.S. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50, 285–315 (1996).

    Article  CAS  Google Scholar 

  9. Harvey, D.J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom. Rev. 18, 349–450 (1999).

    Article  CAS  Google Scholar 

  10. Szymanski, C.M. et al. Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J. Biol. Chem. 278, 24509–24520 (2003).

    Article  CAS  Google Scholar 

  11. Sletmoen, M., Maurstad, G., Sikorski, P., Paulsen, B.S. & Stokke, B.T. Characterisation of bacterial polysaccharides: steps towards single-molecular studies. Carbohydr. Res. 338, 2459–2475 (2003).

    Article  CAS  Google Scholar 

  12. Buttke, T.M. & Ingram, L.O. Comparison of lipopolysaccharides from Agmenellum quadruplicatum to Escherichia coli and Salmonella typhimurium by using thin-layer chromatography. J. Bacteriol. 124, 1566–1573 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Angeloni, S. et al. Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15, 31–41 (2005).

    Article  CAS  Google Scholar 

  14. Zheng, T., Peelen, D. & Smith, L.M. Lectin arrays for profiling cell surface carbohydrate expression. J. Am. Chem. Soc. 127, 9982–9983 (2005).

    Article  CAS  Google Scholar 

  15. Kuno, A. et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat. Methods 2, 851–856 (2005).

    Article  CAS  Google Scholar 

  16. Aabenhus, R., Hynes, S.O., Permin, H., Moran, A.P. & Andersen, L.P. Lectin typing of Campylobacter concisus. J. Clin. Microbiol. 40, 715–717 (2002).

    Article  CAS  Google Scholar 

  17. Hynes, S.O., Hirmo, S., Wadstrom, T. & Moran, A.P. Differentiation of Helicobacter pylori isolates based on lectin binding of cell extracts in an agglutination assay. J. Clin. Microbiol. 37, 1994–1998 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ertl, P. & Mikkelsen, S.R. Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition. Anal. Chem. 73, 4241–4248 (2001).

    Article  CAS  Google Scholar 

  19. Annuk, H., Hynes, S.O., Hirmo, S., Mikelsaar, M. & Wadstrom, T. Characterisation and differentiation of lactobacilli by lectin typing. J. Med. Microbiol. 50, 1069–1074 (2001).

    Article  CAS  Google Scholar 

  20. Disney, M.D. & Seeberger, P.H. The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem. Biol. 11, 1701–1707 (2004).

    Article  CAS  Google Scholar 

  21. Gamian, A., Kenne, L., Mieszala, M., Ulrich, J. & Defaye, J. Structure of the Escherichia coli O24 and O56 O-specific sialic-acid-containing polysaccharides and linkage of these structures to the core region in lipopolysaccharides. Eur. J. Biochem. 225, 1211–1220 (1994).

    Article  CAS  Google Scholar 

  22. Yao, Z. & Valvano, M.A. Genetic analysis of the O-specific lipopolysaccharide biosynthesis region (rfb) of Escherichia coli K-12 W3110: identification of genes that confer group 6 specificity to Shigella flexneri serotypes Y and 4a. J. Bacteriol. 176, 4133–4143 (1994).

    Article  CAS  Google Scholar 

  23. Wu, A.M., Wu, J.H., Singh, T., Liu, J.H. & Herp, A. Lectinochemical studies on the affinity of Anguilla anguilla agglutinin for mammalian glycotopes. Life Sci. 75, 1085–1103 (2004).

    Article  CAS  Google Scholar 

  24. Baldus, S.E. et al. Characterization of the binding specificity of Anguilla anguilla agglutinin (AAA) in comparison to Ulex europaeus agglutinin I (UEA-I). Glycoconj. J. 13, 585–590 (1996).

    Article  CAS  Google Scholar 

  25. Alvarez, R.A., Lee, A., Davis, C., Hoffmann, J. & Blixt, O. Defining the binding specificity of commercially available plant lectins using a printed glycan array. Glycobiology 15, 1207 (2005).

    Google Scholar 

  26. Coyne, M.J., Reinap, B., Lee, M.M. & Comstock, L.E. Human symbionts use a host-like pathway for surface fucosylation. Science 307, 1778–1781 (2005).

    Article  CAS  Google Scholar 

  27. Vimr, E.R., Kalivoda, K.A., Deszo, E.L. & Steenbergen, S.M. Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev. 68, 132–153 (2004).

    Article  CAS  Google Scholar 

  28. Badger, J.L. & Kim, K.S. Environmental growth conditions influence the ability of Escherichia coli K1 to invade brain microvascular endothelial cells and confer serum resistance. Infect. Immun. 66, 5692–5697 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Neidhardt, F.C., Bloch, P.L. & Smith, D.F. Culture medium for enterobacteria. J. Bacteriol. 119, 736–747 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Karlsson, K.A. The human gastric colonizer Helicobacter pylori: a challenge for host-parasite glycobiology. Glycobiology 10, 761–771 (2000).

    Article  CAS  Google Scholar 

  31. Friis, L.M., Pin, C., Pearson, B.M. & Wells, J.M. In vitro cell culture methods for investigating Campylobacter invasion mechanisms. J. Microbiol. Methods 61, 145–160 (2005).

    Article  CAS  Google Scholar 

  32. Manimala, J.C., Li, Z., Jain, A., VedBrat, S. & Gildersleeve, J.C. Carbohydrate array analysis of anti-Tn antibodies and lectins reveals unexpected specificities: implications for diagnostic and vaccine development. ChemBioChem 6, 2229–2241 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D.E. Graham, Department of Chemistry and Biochemistry, University of Texas at Austin, for JM101; S.M. Payne, Department of Molecular Genetics and Microbiology, University of Texas at Austin, for LT2 and HB101; R. Silver and L. Wright, University of Rochester Medical Center, for RS218; I.J. Molineux, Department of Molecular Genetics and Microbiology, University of Texas at Austin; and the Beckman Young Investigator Award for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara K Mahal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Growth curve of RS218 in EZ Rich Media. (PDF 24 kb)

Supplementary Fig. 2

Dye uptake as a function of OD600 for cells grown in both EZ Rich Media (Rich Media) and Luria Broth. (PDF 21 kb)

Supplementary Fig. 3

Experimental for 2-color growth-dependent variation of RS218 glycosylation. (PDF 20 kb)

Supplementary Fig. 4

2-color growth dependent variation of RS218 glycosylation (EZ-Rich Defined Media). (PDF 66 kb)

Supplementary Fig. 5

2-color growth dependent variation of RS218 glycosylation (Luria Broth (LB)). (PDF 83 kb)

Supplementary Table 1

Lectin panel. (PDF 23 kb)

Supplementary Table 2

Mean fluorescence and standard deviations. (PDF 10 kb)

Supplementary Table 3

Agglutination data. (PDF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, KL., Pilobello, K. & Mahal, L. Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol 2, 153–157 (2006). https://doi.org/10.1038/nchembio767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing