Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic polymorphism of single actin molecules in the actin filament

Abstract

Actin filament dynamics are critical in cell motility1,2. The structure of actin filament changes spontaneously and can also be regulated by actin-binding proteins, allowing actin to readily function in response to external stimuli1. The interaction with the motor protein myosin changes the dynamic nature of actin filaments3,4. However, the molecular bases for the dynamic processes of actin filaments are not well understood. Here, we observed the dynamics of rabbit skeletal-muscle actin conformation by monitoring individual molecules in the actin filaments using single-molecule fluorescence resonance energy transfer (FRET)5,6,7 imaging with total internal reflection fluorescence microscopy (TIRFM)8. The time trajectories of FRET show that actin switches between low- and high-FRET efficiency states on a timescale of seconds. If actin filaments are chemically cross-linked, a state that inhibits myosin motility9, the equilibrium shifts to the low-FRET conformation, whereas when the actin filament is interacting with myosin, the high-FRET conformation is favored. This dynamic equilibrium suggests that actin can switch between active and inactive conformations in response to external signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule FRET measurements from single actin molecules in the filament.
Figure 2: FRET from single actin molecules in the filaments.
Figure 3: Conformational states of actin that activate (A) and inactivate (I) the myosin motility.

Similar content being viewed by others

References

  1. Rafelski, S.M. & Theriot, J.A. Crawling toward a unified model of cell mobility: spatial and temporal regulation of actin dynamics. Annu. Rev. Biochem. 73, 209–239 (2004).

    Article  CAS  Google Scholar 

  2. Pollard, T.D., Blanchoin, L. & Mullins, R.D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  Google Scholar 

  3. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60 (1984).

    Article  CAS  Google Scholar 

  4. Humphrey, D., Duggan, C., Saha, D., Smith, D. & Kas, J. Active fluidization of polymer networks through molecular motors. Nature 416, 413–416 (2002).

    Article  CAS  Google Scholar 

  5. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).

    Article  CAS  Google Scholar 

  6. Ishii, Y., Yoshida, T., Funatsu, T., Wazawa, T. & Yanagida, T. Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution. Chem. Phys. 247, 163–173 (1999).

    Article  CAS  Google Scholar 

  7. Ha, T. et al. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641 (2002).

    Article  CAS  Google Scholar 

  8. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  CAS  Google Scholar 

  9. Prochniewicz, E. & Yanagida, T. Inhibition of sliding movement of F-actin by crosslinking emphasizes the role of actin structure in the mechanism of motility. J. Mol. Biol. 216, 761–772 (1990).

    Article  CAS  Google Scholar 

  10. Moens, P.D., Yee, D.J. & dos Remedios, C.G. Determination of the radial coordinate of Cys-374 in F-actin using fluorescence resonance energy transfer spectroscopy: effect of phalloidin on polymer assembly. Biochemistry 33, 13102–13108 (1994).

    Article  CAS  Google Scholar 

  11. Mermall, V., Post, P.L. & Mooseker, M.S. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279, 527–533 (1998).

    Article  CAS  Google Scholar 

  12. Otterbein, L.R., Graceffa, P. & Dominguez, R. The crystal structure of uncomplexed actin in the ADP state. Science 293, 708–711 (2001).

    Article  CAS  Google Scholar 

  13. Galkin, V.E., VanLoock, M.S., Orlova, A. & Egelman, E.H. A new internal mode in F-actin helps explain the remarkable evolutionary conservation of actin's sequence and structure. Curr. Biol. 12, 570–575 (2002).

    Article  CAS  Google Scholar 

  14. Orlova, A. & Egelman, E.H. Structural dynamics of F-actin: I. Changes in the C terminus. J. Mol. Biol. 245, 582–597 (1995).

    Article  CAS  Google Scholar 

  15. Moens, P.D. & dos Remedios, C.G. A conformational change in F-actin when myosin binds: fluorescence resonance energy transfer detects an increase in the radial coordinate of Cys-374. Biochemistry 36, 7353–7360 (1997).

    Article  CAS  Google Scholar 

  16. McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771–781 (1997).

    Article  CAS  Google Scholar 

  17. Egelman, E.H., Francis, N. & DeRosier, D.J. F-actin is a helix with a random variable twist. Nature 298, 131–135 (1982).

    Article  CAS  Google Scholar 

  18. Schmid, M.F., Sherman, M.B., Matsudaira, P. & Chiu, W. Structure of the acrosomal bundle. Nature 431, 104–107 (2004).

    Article  CAS  Google Scholar 

  19. Ng, C.M. & Ludescher, R.D. Microsecond rotational dynamics of F-actin in ActoS1 filaments during ATP hydrolysis. Biochemistry 33, 9098–9104 (1994).

    Article  CAS  Google Scholar 

  20. Harada, Y., Sakurada, K., Aoki, T., Thomas, D.D. & Yanagida, T. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J. Mol. Biol. 216, 49–68 (1990).

    Article  CAS  Google Scholar 

  21. James, L.C. & Tawfik, D.S. Conformational diversity and protein evolution–a 60-year-old hypothesis revisited. Trends. Biochem. Sci. 28, 361–368 (2003).

    Article  CAS  Google Scholar 

  22. Ito, Y. et al. Regional polysterism in the GTP-bound form of the human c-Ha-Ras protein. Biochemistry 36, 9109–9119 (1997).

    Article  CAS  Google Scholar 

  23. Eisenmesser, E.Z. et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature 438, 117–121 (2005).

    Article  CAS  Google Scholar 

  24. Kirschner, M., Gerhart, J. & Mitchison, T. Molecular “vitalism”. Cell 100, 79–88 (2000).

    Article  CAS  Google Scholar 

  25. Takashi, R. A novel actin label: a fluorescent probe at glutamine-41 and its consequences. Biochemistry 27, 938–943 (1988).

    Article  CAS  Google Scholar 

  26. Homma, K., Yoshimura, M., Saito, J., Ikebe, R. & Ikebe, M. The core of the motor domain determines the direction of myosin movement. Nature 412, 831–834 (2001).

    Article  CAS  Google Scholar 

  27. Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F. & Holmes, K.C. Atomic structure of the actin:DNase I complex. Nature 347, 37–44 (1990).

    Article  CAS  Google Scholar 

  28. Mendelson, R. & Morris, E.P. The structure of the acto-myosin subfragment 1 complex: results of searches using data from electron microscopy and x-ray crystallography. PNAS 94, 8533–8538 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.H. Iwane and T. Wazawa for technical support and P. Karagiannis, J. West and M. Zulliger for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Yanagida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Single-molecule FRET microscopy (PDF 506 kb)

Supplementary Fig. 2

Power spectrum densities of the fluctuation of the fluorescence intensities and FRET efficiency. (PDF 161 kb)

Supplementary Fig. 3

Evaluation of observed FRET signals using correlation factors. (PDF 144 kb)

Supplementary Fig. 4

The effect of myosin-V in the absence of ATP on the FRET efficiency distribution. (PDF 268 kb)

Supplementary Fig. 5

Kinetic analysis for the transition between two actin conformational states. (PDF 199 kb)

Supplementary Fig. 6

Orthogonally polarized florescence measurement. (PDF 1931 kb)

Supplementary Methods (PDF 75 kb)

Supplementary Data (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozuka, J., Yokota, H., Arai, Y. et al. Dynamic polymorphism of single actin molecules in the actin filament. Nat Chem Biol 2, 83–86 (2006). https://doi.org/10.1038/nchembio763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing