Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric inhibitors of Bcr-abl–dependent cell proliferation

Abstract

Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized at the molecular level by the expression of Bcr-abl, a 210-kDa fusion protein with deregulated tyrosine kinase activity. Encouraged by the clinical validation of Bcr-abl as the target for the treatment of CML by imatinib, we sought to identify pharmacological agents that could target this kinase by a distinct mechanism. We report the discovery of a new class of Bcr-abl inhibitors using an unbiased differential cytotoxicity screen of a combinatorial kinase-directed heterocycle library. Compounds in this class (exemplified by GNF-2) show exclusive antiproliferative activity toward Bcr-abl–transformed cells, with potencies similar to imatinib, while showing no inhibition of the kinase activity of full-length or catalytic domain of c-abl. We propose that this new class of compounds inhibits Bcr-abl kinase activity through an allosteric non-ATP competitive mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell proliferation.
Figure 2: GNF-2 blocks proliferation and induces apoptosis of Ba/F3 cells expressing wild-type Bcr-abl and the E255V mutant.
Figure 3: Construct-dependent inhibition of abl activity by GNF-2.
Figure 4: GNF-2 binds recombinant abl and Bcr-abl.
Figure 5: Model of GNF-2 bound to the abl crystal structure (PDB entry 1OPK).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Schindler, T. et al. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  CAS  Google Scholar 

  2. Gorre, M.E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  Google Scholar 

  3. von Bubnoff, N., Schneller, F., Peschel, C. & Duyster, J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359, 487–491 (2002).

    Article  CAS  Google Scholar 

  4. Cowan-Jacob, S.W. et al. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev. Med. Chem. 4, 285–299 (2004).

    Article  CAS  Google Scholar 

  5. Weisberg, E. et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7, 129–141 (2005).

    Article  CAS  Google Scholar 

  6. Shah, N.P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    Article  CAS  Google Scholar 

  7. Superti-Furga, G. & Courtneidge, S.A. Structure-function relationships in Src family and related protein tyrosine kinases. Bioessays 17, 321–330 (1995).

    Article  CAS  Google Scholar 

  8. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

    Article  CAS  Google Scholar 

  9. Barker, A.J. et al. Studies leading to the identification of ZD1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett. 11, 1911–1914 (2001).

    Article  CAS  Google Scholar 

  10. Meijer, L. et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527–536 (1997).

    Article  CAS  Google Scholar 

  11. Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56, 100–104 (1996).

    CAS  Google Scholar 

  12. Regan, J. et al. Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate. J. Med. Chem. 45, 2994–3008 (2002).

    Article  CAS  Google Scholar 

  13. Lyons, J.F., Wilhelm, S., Hibner, B. & Bollag, G. Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer 8, 219–225 (2001).

    Article  CAS  Google Scholar 

  14. Lowinger, T.B., Riedl, B., Dumas, J. & Smith, R.A. Design and discovery of small molecules targeting raf-1 kinase. Curr. Pharm. Des. 8, 2269–2278 (2002).

    Article  CAS  Google Scholar 

  15. Ohren, J.F. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol. Biol. 11, 1192–1197 (2004).

    Article  CAS  Google Scholar 

  16. Barnett, S.F. et al. Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem. J. 385, 399–408 (2005).

    Article  CAS  Google Scholar 

  17. Grimsby, J. et al. Allosteric activators of glucokinase: potential role in diabetes therapy. Science 301, 370–373 (2003).

    Article  CAS  Google Scholar 

  18. Ding, S., Gray, N.S., Wu, X., Ding, Q. & Schultz, P.G. A combinatorial scaffold approach toward kinase-directed heterocycle libraries. J. Am. Chem. Soc. 124, 1594–1596 (2002).

    Article  CAS  Google Scholar 

  19. Goldman, J.M. & Melo, J.V. Chronic myeloid leukemia–advances in biology and new approaches to treatment. N. Engl. J. Med. 349, 1451–1464 (2003).

    Article  CAS  Google Scholar 

  20. Druker, B.J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566 (1996).

    Article  CAS  Google Scholar 

  21. Carroll, M. et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 90, 4947–4952 (1997).

    Article  CAS  Google Scholar 

  22. Dorsey, J.F. et al. Interleukin-3 protects Bcr-Abl-transformed hematopoietic progenitor cells from apoptosis induced by Bcr-Abl tyrosine kinase inhibitors. Leukemia 16, 1589–1595 (2002).

    Article  CAS  Google Scholar 

  23. Hantschel, O. et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112, 845–857 (2003).

    Article  CAS  Google Scholar 

  24. Chou, T.C. & Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984).

    Article  CAS  Google Scholar 

  25. von Bubnoff, N. et al. Inhibition of wild-type and mutant Bcr-Abl by pyrido-pyrimidine-type small molecule kinase inhibitors. Cancer Res. 63, 6395–6404 (2003).

    CAS  PubMed  Google Scholar 

  26. Burke, J.R. et al. BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J. Biol. Chem. 278, 1450–1456 (2003).

    Article  CAS  Google Scholar 

  27. Nardi, V., Azam, M. & Daley, G.Q. Mechanisms and implications of imatinib resistance mutations in BCR-ABL. Curr. Opin. Hematol. 11, 35–43 (2004).

    Article  CAS  Google Scholar 

  28. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  Google Scholar 

  29. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov. 1, 493–502 (2002).

    Article  CAS  Google Scholar 

  30. Klejman, A., Rushen, L., Morrione, A., Slupianek, A. & Skorski, T. Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene 21, 5868–5876 (2002).

    Article  CAS  Google Scholar 

  31. Sun, X., Layton, J.E., Elefanty, A. & Lieschke, G.J. Comparison of effects of the tyrosine kinase inhibitors AG957, AG490, and STI571 on BCR-ABL–expressing cells, demonstrating synergy between AG490 and STI571. Blood 97, 2008–2015 (2001).

    Article  CAS  Google Scholar 

  32. Topaly, J., Zeller, W.J. & Fruehauf, S. Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia 15, 342–347 (2001).

    Article  CAS  Google Scholar 

  33. Gumireddy, K. et al. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc. Natl. Acad. Sci. USA 102, 1992–1997 (2005).

    Article  CAS  Google Scholar 

  34. Branford, S. et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 102, 276–283 (2003).

    Article  CAS  Google Scholar 

  35. Danhauser-Riedl, S., Warmuth, M., Druker, B.J., Emmerich, B. & Hallek, M. Activation of Src kinases p53/56lyn and p59hck by p210bcr/abl in myeloid cells. Cancer Res. 56, 3589–3596 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.D. Griffin, G. Gilliland, R. Salgia and J. Duyster for kindly providing us with cell lines, and C. Trussell, D. Kemp, M. Warmuth and S. Kim for their help and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathanael S Gray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Inhibition of cell proliferation. (PDF 19 kb)

Supplementary Table 2

Inhibition of in vitro kinase activity. (PDF 68 kb)

Supplementary Methods (PDF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adrián, F., Ding, Q., Sim, T. et al. Allosteric inhibitors of Bcr-abl–dependent cell proliferation. Nat Chem Biol 2, 95–102 (2006). https://doi.org/10.1038/nchembio760

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing