Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases

Abstract

S-Adenosyl-L-methionine (AdoMet) is the major methyl donor for biological methylation reactions catalyzed by methyltransferases. We report the first chemical synthesis of AdoMet analogs with extended carbon chains replacing the methyl group and their evaluation as cofactors for all three classes of DNA methyltransferases. Extended groups containing a double or triple bond in the β position to the sulfonium center were transferred onto DNA in a catalytic and sequence-specific manner, demonstrating a high utility of such synthetic cofactors for targeted functionalization of biopolymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enzymatic transalkylation reactions by DNA methyltransferases.

Similar content being viewed by others

References

  1. Cantoni, G.L. J. Am. Chem. Soc. 74, 2942–2943 (1952).

    Article  CAS  Google Scholar 

  2. Cheng, X. & Blumenthal, R.M. S-Adenosylmethionine-dependent Methyltransferases: Structures and Functions. 392 (World Scientific, Singapore, 1999).

    Book  Google Scholar 

  3. Goll, M.G. & Bestor, T.H. Annu. Rev. Biochem. 74, 481–514 (2005).

    Article  CAS  Google Scholar 

  4. Schlenk, F. & Dainko, J.L. Biochim. Biophys. Acta 385, 312–323 (1975).

    Article  CAS  Google Scholar 

  5. Schlenk, F. in Biochemistry of Adenosylmethionine (eds. Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H.G. & Schlenk, F.) 3–17 (Columbia Univ. Press, New York, 1977).

    Google Scholar 

  6. De La Haba, G., Jamieson, G.A., Mudd, S.H. & Richards, H.H. J. Am. Chem. Soc. 81, 3975–3980 (1959).

    Article  CAS  Google Scholar 

  7. Borchardt, R.T. & Wu, Y.S. J. Med. Chem. 19, 1099–1103 (1976).

    Article  CAS  Google Scholar 

  8. Goedecke, K., Pignot, M., Goody, R.S., Scheidig, A.J. & Weinhold, E. Nat. Struct. Biol. 8, 121–125 (2001).

    Article  CAS  Google Scholar 

  9. Klimasauskas, S., Kumar, S., Roberts, R.J. & Cheng, X. Cell 76, 357–369 (1994).

    Article  CAS  Google Scholar 

  10. Merkiene, E., Vilkaitis, G. & Klimasauskas, S. Biol. Chem. 379, 569–571 (1998).

    CAS  PubMed  Google Scholar 

  11. Ho, D.K., Wu, J.C., Santi, D.V. & Floss, H.G. Arch. Biochem. Biophys. 284, 264–269 (1991).

    Article  CAS  Google Scholar 

  12. Schubert, H.L., Blumenthal, R.M. & Cheng, X. Trends Biochem. Sci. 28, 329–335 (2003).

    Article  CAS  Google Scholar 

  13. Mi, S. & Roberts, R.J. Nucleic Acids Res. 21, 2459–2464 (1993).

    Article  CAS  Google Scholar 

  14. Pljevaljcic, G., Schmidt, F. & Weinhold, E. Chem. Biochem. 5, 265–269 (2004).

    CAS  Google Scholar 

  15. Roberts, R.J., Vincze, T., Posfai, J. & Macelis, D. Nucleic Acids Res. 33, D230–D232 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to E. Merkiene and M. Čaikovskij for constructing the Q82A variant of M.HhaI, F. Grygas and R. Gerasimaite for technical assistance and K. Glensk for preparing M.TaqI. We thank V. Gabelica and F. Rosu for performing high-resolution ESI-MS measurements at the Center for Analysis of Residues in Traces (CART), laboratory of E. De Pauw, University of Liège, Belgium. C.D. thanks the Deutsche Forschungsgemeinschaft for a stipend within the Graduiertenkolleg 440. This work was supported by grants from VolkswagenStiftung, the Howard Hughes Medical Institute and the Ministry of Science and Education of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saulius Klimas̆auskas or Elmar Weinhold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

HPLC analysis of chemically and enzymatically synthesized S-adenosyl-L-ethionine. (PDF 363 kb)

Supplementary Fig. 2

Analysis of enzymatic transalkylation reactions by DNA MTases. (PDF 1450 kb)

Supplementary Fig. 3

Analysis of transalkylation products formed in duplex oligodeoxynucleotides. (PDF 472 kb)

Supplementary Fig. 4

Blockage of restriction endonuclease cleavage at overlapping sites on DNA by enzymatic incorporation of extended groups. (PDF 232 kb)

Supplementary Table 1

ESI-MS analysis of synthetic AdoMet analogs and modified nucleosides formed after enzymatic transalkylations with DNA MTases. (PDF 98 kb)

Supplementary Methods (PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalhoff, C., Lukinavičius, G., Klimas̆auskas, S. et al. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat Chem Biol 2, 31–32 (2006). https://doi.org/10.1038/nchembio754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing