Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Actin is the primary cellular receptor of bistramide A

Abstract

Bistramide A (1) is a marine natural product with broad, potent antiproliferative effects1,2,3,4,5,6,7. Bistramide A has been reported to selectively activate protein kinase C (PKC) δ, leading to the view that PKCδ is the principal mediator of antiproliferative activity of this natural product8. Contrary to this observation, we established that bistramide A binds PKCδ with low affinity, does not activate this kinase in vitro and does not translocate GFP-PKCδ. Furthermore, we identified actin as the cellular receptor of bistramide A. We report that bistramide A disrupts the actin cytoskeleton, inhibits actin polymerization, depolymerizes filamentous F-actin in vitro and binds directly to monomeric G-actin in a 1:1 ratio with a Kd of 7 nM. We also constructed a fully synthetic9 bistramide A–based affinity matrix and isolated actin as a specific bistramide A–binding protein. This activity provides a molecular explanation for the potent antiproliferative effects of bistramide A, identifying it as a new biochemical tool for studies of the actin cytoskeleton and as a potential lead for development of a new class of antitumor agents7,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Effects of bistramide A on activation, binding and translocation of PKCδ.
Figure 3: Effect of bistramide A (bis A) on actin in A549 cells and in vitro.
Figure 4: Purification of bistramide A–binding proteins from A549 cell lysate.

Similar content being viewed by others

References

  1. Gouiffès, D. et al. Proton nuclear magnetic study of bistramide A, a new cytotoxic drug isolated from Lissoclinum bistratum Sluiter. Tetrahedron 44, 451459 (1988).

    Article  Google Scholar 

  2. Degnan, B.M. et al. Novel cytotoxic compounds from the ascidian Lissoclinum Bistratum. J. Med. Chem. 32, 1354–1359 (1989).

    Article  CAS  Google Scholar 

  3. Biard, J.F., Roussakis, C., Kornprobst, J.M., Gouffes-Barbin, D. & Verbist, J.F. Bistramides A, B, C, D, and K: a new class of bioactive cyclic polyethers from Lissoclinum Bistratum. J. Nat. Prod. 57, 1336–1345 (1994).

    Article  CAS  Google Scholar 

  4. Gouiffès, D. et al. Bistramide A, a new toxin from the urochordata Lissoclinum bistratum Sluiter: isolation and preliminary characterization. Toxicon 26, 1129–1136 (1988).

    Article  Google Scholar 

  5. Sauviat, M.P. & Verbist, J.F. Alteration of the voltage-dependence of the twitch tension in frog skeletal muscle fibres by a polyether, bistramide A. Gen. Physiol. Biophys. 12, 465–471 (1993).

    PubMed  CAS  Google Scholar 

  6. Sauviat, M.P., Gouiffes-Barbin, D., Ecault, E. & Verbist, J.F. Blockades of sodium channels by bistramide A in voltage-clamped frog skeletal muscles fibres. Biochim. Biophys. Acta 1103, 109–114 (1992).

    Article  CAS  Google Scholar 

  7. Riou, D., Roussakis, C., Biard, J.F. & Verbist, J.F. Comparative study of the antitumor activity of bistramides A, D and K against a non-small cell broncho-pulmonary carcinoma. Anticancer Res. 13, 2331–2334 (1993).

    PubMed  CAS  Google Scholar 

  8. Griffiths, G. et al. The polyether bistratene A activates protein kinase C-δ and induces growth arrest in HL-60. Biochem. Biophys. Res. Commun. 222, 802–808 (1996).

    Article  CAS  Google Scholar 

  9. Statsuk, A.V., Liu, D. & Kozmin, S.A. Synthesis of bistramide A. J. Am. Chem. Soc. 126, 9546–9547 (2004).

    Article  CAS  Google Scholar 

  10. Jordan, M.A. & Wilson, L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Opin. Cell Biol. 10, 123–130 (1998).

    Article  CAS  Google Scholar 

  11. Frey, M.R., Leontieva, O., Waters, D.J. & Black, J.D. Stimulation of protein kinase C-dependent and independent signalling pathways by bistratene A in intestinal epithelial cells. Biochem. Pharmacol. 61, 1093–1100 (2001).

    Article  CAS  Google Scholar 

  12. Sun, H. et al. Real-time protein kinase assay. Anal. Chem. 77, 2043–2049 (2005).

    Article  CAS  Google Scholar 

  13. Wender, P.A. et al. R The design, computer modeling, solution structure, and biological evaluation of synthetic analogs of bryostatin 1. Proc. Natl. Acad. Sci. USA 95, 6624–6629 (1998).

    Article  CAS  Google Scholar 

  14. Wang, Q.J. et al. Differential localization of protein kinase C δ by phorbol esters and related compounds using fusion protein with green fluorescent protein. J. Biol. Chem. 274, 37233–37239 (1999).

    Article  CAS  Google Scholar 

  15. Baryza, J.L., Brenner, S.E., Craske, M.L., Meyer, T. & Wender, P.A. Simplified analogs of bryostatin with anticancer activity display greater potency for translocation of PKC δ -GFP. Chem. Biol. 11, 1261–1267 (2004).

    Article  CAS  Google Scholar 

  16. Roussakis, C. et al. Effects of bistramide A on a non-small-cell bronchial carcinoma line. Cancer Chemother. Pharmacol. 28, 283–292 (1991).

    PubMed  CAS  Google Scholar 

  17. Watters, D.J., Beamish, H.J., Marshall, K.A., Gardiner, R.A., Seymour, G.J. & Lavin, M.F. Accumulation of HL-60 cells in G2/M and inhibition of cytokinesis caused by two marine compounds, bistratene A and cycloxazoline. Cancer Chemother. Pharmacol. 33, 399–409 (1994).

    Article  CAS  Google Scholar 

  18. Glotzer, M. The molecular requirements for cytokinesis. Science 307, 1735–1739 (2005).

    Article  CAS  Google Scholar 

  19. Spector, I., Shochet, N., Blasberger, D. & Kashman, Y. Latrunculins – novel marine metabolites that disrupt microfilament organization and affect cell growth: 1. Comparison with cytochalisin D. Cell Motil. Cytoskeleton 13, 127–144 (1989).

    Article  CAS  Google Scholar 

  20. Bubb, M.R., Senderowicz, A.M.J., Sausville, E.A., Duncan, K.L.K. & Korn, E.D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem. 269, 14869–14871 (1994).

    PubMed  CAS  Google Scholar 

  21. Saito, S., Watabe, S., Ozaki, H., Fusetani, N. & Karaki, H. Mycalolide B, a novel actin depolymerizing agent. J. Biol. Chem. 269, 29710–29714 (1994).

    PubMed  CAS  Google Scholar 

  22. Bubb, M.R., Spector, I., Bershadsky, A.D. & Korn, E.D. Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. J. Biol. Chem. 270, 3463–3466 (1995).

    Article  CAS  Google Scholar 

  23. Saito, S. et al. Novel actin depolymerizing macrolide aplyronine A. J. Biochem. 120, 552–555 (1996).

    Article  CAS  Google Scholar 

  24. Terry, D.R., Spector, I., Higa, T. & Bubb, M.R. Misakinolide A is a marine macrolide that caps but does not sever filamentous actin. J. Biol. Chem. 272, 7841–7845 (1997).

    Article  CAS  Google Scholar 

  25. Bai, R. et al. Dolastatin 11, a marine depsipeptide, arrests cells at cytokinesis and induces hyperpolymerization of purified actin. Mol. Pharmacol. 59, 462–469 (2001).

    Article  CAS  Google Scholar 

  26. Marquez, B.L. et al. Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J. Nat. Prod. 65, 866–871 (2002).

    Article  CAS  Google Scholar 

  27. Bai, R., Covell, D.G., Liu, C., Ghosh, A.G. & Hamel, E. (-)-Doliculide, a new macrocyclic depsipeptide enhancer of actin assembly. J. Biol. Chem. 277, 32165–32171 (2002).

    Article  CAS  Google Scholar 

  28. Yeung, K.S. & Paterson, I. Actin-binding marine metabolites: total synthesis and biological importance. Angew. Chem. Int. Edn. Engl. 41, 4632–4653 (2002).

    Article  CAS  Google Scholar 

  29. Klenchin, V.A. et al. Trisoxazole macrolide toxins mimic the binding of actin-capping proteins to actin. Nat. Struct. Biol. 10, 1058–1063 (2003).

    Article  CAS  Google Scholar 

  30. Chatterjee, A.K., Morgan, J.P., Scholl, M. & Grubbs, R.H. Synthesis of functionalized olefins by cross and ring-closing metatheses. J. Am. Chem. Soc. 122, 3783–3784 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G.F. Biard for a generous sample of natural bistramide A and Y. Lee for assistance with an affinity purification procedure. We also thank T. Meyer for imaging assistance and plasmids and D. Mochly-Rosen for binding assay support. Financial support was provided by the American Cancer Society (RSG-04-017-CDD) and the US National Institutes of Health (Grant CA31845). A.V.S. acknowledges the support of Burroughs Wellcome Fund Interfaces #1001774. J.L.B. is supported by an ACS Medicinal Chemistry Predoctoral Fellowship. S.A.K. thanks the Dreyfus Foundation for a Teacher-Scholar Award, Amgen for a New Investigator's Award and GlaxoSmithKline for a Chemistry Scholars Award. S.A.K. is a fellow of the Alfred P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A Kozmin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effect of bistramide A on cancer cell cycle. (PDF 382 kb)

Supplementary Fig. 2

Thermodynamic parameters of actin-latrunculin A binding. (PDF 349 kb)

Supplementary Fig. 3

Purification of bistramide A-binding proteins using affinity matrix. (PDF 181 kb)

Supplementary Table 1

Cancer cell growth and viability assays for bistramide A. (PDF 166 kb)

Supplementary Methods (PDF 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Statsuk, A., Bai, R., Baryza, J. et al. Actin is the primary cellular receptor of bistramide A. Nat Chem Biol 1, 383–388 (2005). https://doi.org/10.1038/nchembio748

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio748

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing