Neuronal synapse interaction reconstituted between live cells and supported lipid bilayers


In the nervous system, homophilic and heterophilic adhesion molecules participate in the induction and differentiation of presynaptic transmitter release sites. We focus on the heterophilic interaction between postsynaptic neuroligin-1 (Nlg) and presynaptic β-neurexin (Nrx). Nlg has previously been shown to trigger presynaptic differentiation in a Nrx-expressing axon even when presented on a non-neuronal cell or on beads coated with lipid bilayers. We have now developed a new method to measure single molecule and ensemble distribution of Nrx and Nlg at the contact site between a non-neuronal Nrx-expressing cell and a flat supported glycosylphosphoinositol–neuroligin-1 (GPI-Nlg) lipid bilayer and relate them to adhesion as measured by cell migration and gravity dissociation. We find that within minutes after cell-bilayer contact, Nrx accumulates at the contact site and the contact area is expanded. The strength of cell-bilayer adhesion depends on the morphology of Nrx accumulation, with the focal concentration strengthening adhesion. The results suggest that Nlg-Nrx interaction rapidly establishes a weak, but specific, adhesion between dynamic pre- and postsynaptic processes, which may ultimately require additional molecules for synapse stabilization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Reconstitution of GPI-Nlg in a fluid-supported lipid bilayer.
Figure 2: Distribution of GFP-Nrx in a HEK293 cell in contact with GPI-Nlg–supported lipid bilayer.
Figure 3: Cell immobilization associated with formation of Nrx-Nlg puncta.
Figure 4: Correlation between distribution of GFP-Nrx in cells and cell immobilization.
Figure 5: Inversion assay: relation between Nrx-Nlg distribution and adhesion strength.


  1. 1

    Yamagata, M., Sanes, J.R. & Weiner, J.A. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Scheiffele, P. Cell-cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26, 485–508 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Garner, C.C., Nash, J. & Huganir, R.L. PDZ domains in synapse assembly and signalling. Trends Cell Biol. 10, 274–280 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Dityatev, A. et al. Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J. Neurosci. 24, 9372–9382 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Sytnyk, V., Leshchyns'ka, I., Dityatev, A. & Schachner, M. Trans-Golgi network delivery of synaptic proteins in synaptogenesis. J. Cell Sci. 117, 381–388 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Shapiro, L. & Colman, D.R. Structural biology of cadherins in the nervous system. Curr. Opin. Neurobiol. 8, 593–599 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Benson, D.L. & Tanaka, H. N-cadherin redistribution during synaptogenesis in hippocampal neurons. J. Neurosci. 18, 6892–6904 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Ichtchenko, K. et al. Neuroligin-1—a splice site–specific ligand for β-neurexins. Cell 81, 435–443 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Nguyen, T. & Sudhof, T.C. Binding properties of neuroligin 1 and neurexin 1β reveal function as heterophilic cell adhesion molecules. J. Biol. Chem. 272, 26032–26039 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Song, J.Y., Ichtchenko, K., Sudhof, T.C. & Brose, N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl. Acad. Sci. USA 96, 1100–1105 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Scheiffele, P., Fan, J.H., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nat. Neurosci. 6, 708–716 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W. & Craig, A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Nam, C.I. & Chen, L. Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc. Natl. Acad. Sci. USA 102, 6137–6142 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Sonnleitner, A., Mannuzzu, L.M., Terakawa, S. & Isacoff, E.Y. Structural rearrangements in single ion channels detected optically in living cells. Proc. Natl. Acad. Sci. USA 99, 12759–12764 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Groves, J.T. & Dustin, M.L. Supported planar bilayers in studies on immune cell adhesion and communication. J. Immunol. Methods 278, 19–32 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Sapuri, A.R., Baksh, M.M. & Groves, J.T. Electrostatically targeted intermembrane lipid exchange with micropatterned supported membranes. Langmuir 19, 1606–1610 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Lee, G.M., Ishihara, A. & Jacobson, K.A. Direct observation of brownian motion of lipids in a membrane. Proc. Natl. Acad. Sci. USA 88, 6274–6278 (1991).

    CAS  Article  Google Scholar 

  21. 21

    Fein, M. et al. Lateral mobility of lipid analogues and GPI-anchored proteins in supported bilayers determined by fluorescent bead tracking. J. Membr. Biol. 135, 83–92 (1993).

    CAS  Article  Google Scholar 

  22. 22

    Hovis, J.S. & Boxer, S.G. Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir 17, 3400–3405 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Dustin, M.L. Role of adhesion molecules in activation signaling in T lymphocytes. J. Clin. Immunol. 21, 258–263 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Pierres, A., Benoliel, A.M. & Bongrand, P. Use of a laminar flow chamber to study the rate of bond formation and dissociation between surface-bound adhesion molecules: effect of applied force and distance between surfaces. Faraday Discuss. 111, 321–330 (1998).

    CAS  Article  Google Scholar 

  25. 25

    McClay, D.R., Wessel, G.M. & Marchase, R.B. Inter-cellular recognition—quantitation of initial binding events. Proc. Natl. Acad. Sci. USA 78, 4975–4979 (1981).

    CAS  Article  Google Scholar 

  26. 26

    Westcott, K.R. & Hill, R.L. Reconstitution of a porcine submaxillary gland β-D-galactoside α2—3 sialyltransferase into liposomes. J. Biol. Chem. 260, 13116–13121 (1985).

    CAS  PubMed  Google Scholar 

  27. 27

    Hinterdorfer, P., Baber, G. & Tamm, L.K. Reconstitution of membrane-fusion sites—a total-internal-reflection fluorescence microscopy study of influenza hemagglutinin-nediated membrane-fusion. J. Biol. Chem. 269, 20360–20368 (1994).

    CAS  PubMed  Google Scholar 

  28. 28

    Angrand, M., Briolay, A., Ronzon, F. & Roux, B. Detergent-mediated reconstitution of a glycosyl-phosphatidylinositol-protein into liposomes. Eur. J. Biochem. 250, 168–176 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Sackmann, E. Supported membranes: scientific and practical applications. Science 271, 43–48 (1996).

    CAS  Article  Google Scholar 

Download references


We thank C. Dean and P. Scheiffele for the GPI-Nlg construct, C. Dean for help with initial protein preparation, A. Pralle for help with the TIRF microscopy, H. Aaron for help with the confocal microscopy, and C. Dean, P. Scheiffele, E. Douglas, M. Forstner and S. Rozovsky for fruitful discussions. This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy (contract No. DE-AC03-76SF00098).

Author information



Corresponding authors

Correspondence to Ehud Y Isacoff or Jay T Groves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pautot, S., Lee, H., Isacoff, E. et al. Neuronal synapse interaction reconstituted between live cells and supported lipid bilayers. Nat Chem Biol 1, 283–289 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing