Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preferential synapsis of loxP sites drives ordered strand exchange in Cre-loxP site-specific recombination

Abstract

The bacteriophage P1 Cre recombinase catalyzes site-specific recombination between 34-base-pair loxP sequences in a variety of topological contexts. This reaction is widely used to manipulate DNA molecules in applications ranging from benchtop cloning to genome modifications in transgenic animals. Despite the simple, highly symmetric nature of the Cre-loxP system, there is strong evidence that the reaction is asymmetric; the 'bottom' strands in the recombining loxP sites are preferentially exchanged before the 'top' strands. Here, we address the mechanistic basis for ordered strand exchange in the Cre-loxP recombination pathway. Using suicide substrates containing 5′-bridging phosphorothioate linkages at both cleavage sites, fluorescence resonance energy transfer between synapsed loxP sites and a Cre mutant that can cleave the bridging phosphorothioate linkage but not a normal phosphodiester linkage, we showed that preferential formation of a specific synaptic complex between loxP sites imposes ordered strand exchange during recombination and that synapsis stimulates cleavage of loxP sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cre-loxP site-specific recombination.
Figure 2: Cleavage of loxP suicide substrates.
Figure 3: Effects of synapsis on loxP cleavage.
Figure 4: Cleavage of 5′-bridging phosphorothioate substrates by Cre K201A.
Figure 5: Synapsis of loxP sites monitored by FRET.
Figure 6: Determinants of cleavage preference.
Figure 7: Recombination efficiency of loxP variants.

Similar content being viewed by others

References

  1. Hoess, R.H., Ziese, M. & Sternberg, N. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc. Natl. Acad. Sci. USA 79, 3398–3402 (1982).

    CAS  PubMed  Google Scholar 

  2. Sternberg, N., Hamilton, D., Austin, S., Yarmolinsky, M. & Hoess, R. Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harb. Symp. Quant. Biol. 45, 297–309 (1981).

    CAS  PubMed  Google Scholar 

  3. Nash, H.A. Site-specific recombination: integration, excision, resolution, and inversion of defined DNA segments. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhardt, F.C. et al.) 2363–2376 (ASM Press, Washington, D.C., 1996).

    Google Scholar 

  4. Stark, W.M., Boocock, M.R. & Sherratt, D.J. Catalysis by site-specific recombinases. Trends Genet. 8, 432–439 (1992).

    CAS  PubMed  Google Scholar 

  5. Azaro, M.A. & Landy, A. λ integrase and the λ Int family. in Mobile DNA II (eds. Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M.) 118–148 (ASM Press, Washington D.C., 2002).

    Google Scholar 

  6. Abremski, K. & Hoess, R. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J. Biol. Chem. 259, 1509–1514 (1984).

    CAS  PubMed  Google Scholar 

  7. Barre, F.X. et al. FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. Genes Dev. 14, 2976–2988 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. McCulloch, R., Coggins, L.W., Colloms, S.D. & Sherratt, D.J. Xer-mediated site-specific recombination at cer generates Holliday junctions in vivo. EMBO J. 13, 1844–1855 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kitts, P.A. & Nash, H.A. Bacteriophage lambda site-specific recombination proceeds with a defined order of strand exchanges. J. Mol. Biol. 204, 95–107 (1988).

    CAS  PubMed  Google Scholar 

  10. Nunes-Düby, S., Matsumoto, L. & Landy, A. Site-specific recombination intermediates trapped with suicide substrates. Cell 50, 779–788 (1987).

    PubMed  Google Scholar 

  11. Arciszewska, L.K. & Sherratt, D.J. Xer site-specific recombination in vitro. EMBO J. 14, 2112–2120 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sauer, B. Chromosome manipulation by Cre-loxP recombination. in Mobile DNA II (eds. Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M.) 38–58 (ASM Press, Washington D.C., 2002).

    Google Scholar 

  13. Van Duyne, G.D. A structural view of Cre-loxP site-specific recombination. Annu. Rev. Biophys. Biomol. Struct. 30, 87–104 (2001).

    CAS  PubMed  Google Scholar 

  14. Van Duyne, G.D. A structural view of tyrosine recombinase site-specific recombination. in Mobile DNA II (eds. Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M.) 93–117 (ASM Press, Washington DC, 2002).

    Google Scholar 

  15. Hoess, R., Wierzbicki, A. & Abremski, K. Isolation and characterization of intermediates in site-specific recombination. Proc. Natl. Acad. Sci. USA 84, 6840–6844 (1987).

    CAS  PubMed  Google Scholar 

  16. Lee, L. & Sadowski, P.D. Sequence of the loxP site determines the order of strand exchange by the Cre recombinase. J. Mol. Biol. 326, 397–412 (2003).

    CAS  PubMed  Google Scholar 

  17. Martin, S.S., Pulido, E., Chu, V.C., Lechner, T.S. & Baldwin, E.P. The order of strand exchanges in Cre-LoxP recombination and its basis suggested by the crystal structure of a Cre-LoxP Holliday junction complex. J. Mol. Biol. 319, 107–127 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ennifar, E., Meyer, J.E., Buchholz, F., Stewart, A.F. & Suck, D. Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation. Nucleic Acids Res. 31, 5449–5460 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, G. & Saito, I. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216, 55–65 (1998).

    CAS  PubMed  Google Scholar 

  20. Krogh, B.O. & Shuman, S. Catalytic mechanism of DNA topoisomerase IB. Mol. Cell 5, 1035–1041 (2000).

    CAS  PubMed  Google Scholar 

  21. Burgin, A.B., Jr., Huizenga, B.N. & Nash, H.A. A novel suicide substrate for DNA topoisomerases and site-specific recombinases. Nucleic Acids Res. 23, 2973–2979 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Burgin, A.B. & Nash, H.A. Suicide substrates reveal properties of the homology-dependent steps during integrative recombination of bacteriophage lambda. Curr. Biol. 5, 1312–1321 (1995).

    CAS  PubMed  Google Scholar 

  23. Burgin, A.B. Jr. & Nash, H.A. Symmetry in the mechanism of bacteriophage lambda integrative recombination. Proc. Natl. Acad. Sci. USA 89, 9642–9646 (1992).

    CAS  PubMed  Google Scholar 

  24. Xu, Y. & Kool, E.T. A novel 5′-iodonucleoside allows efficient nonenzymatic ligation of single-stranded and duplex DNAs. Tetrahedron Lett. 38, 5595–5598 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller, G.P. & Kool, E.T. A simple method for electrophilic functionalization of DNA. Org. Lett. 4, 3599–3601 (2002).

    CAS  PubMed  Google Scholar 

  26. Ringrose, L. et al. Comparative kinetic analysis of FLP and Cre recombinases: mathematical models for DNA binding and recombination. J. Mol. Biol. 284, 363–384 (1998).

    CAS  PubMed  Google Scholar 

  27. Abremski, K., Wierzbicki, A., Frommer, B. & Hoess, R.H. Bacteriophage P1 Cre-loxP site-specific recombination. Site-specific DNA topoisomerase activity of the Cre recombination protein. J. Biol. Chem. 261, 391–396 (1986).

    CAS  PubMed  Google Scholar 

  28. Wierzbicki, A., Kendall, M., Abremski, K. & Hoess, R. A mutational analysis of the bacteriophage P1 recombinase Cre. J. Mol. Biol. 195, 785–794 (1987).

    CAS  PubMed  Google Scholar 

  29. Cheng, C., Kussie, P., Pavletich, N. & Shuman, S. Conservation of structure and mechanism between eukaryotic topoisomerase I and site-specific recombinases. Cell 92, 841–850 (1998).

    CAS  PubMed  Google Scholar 

  30. Guo, F., Gopaul, D.N. & Van Duyne, G.D. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc. Natl. Acad. Sci. USA 96, 7143–7148 (1999).

    CAS  PubMed  Google Scholar 

  31. Guo, F., Gopaul, D.N. & Van Duyne, G.D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46 (1997).

    CAS  PubMed  Google Scholar 

  32. Gopaul, D.N., Guo, F. & Van Duyne, G.D. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J. 17, 4175–4187 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghosh, K., Lau, C.K., Guo, F., Segall, A.M. & Van Duyne, G.D. Peptide trapping of the Holliday junction intermediate in Cre-loxP site-specific recombination. J. Biol. Chem. 280, 8290–8299 (2005).

    CAS  PubMed  Google Scholar 

  34. Sherratt, D.J. & Wigley, D.B. Conserved themes but novel activities in recombinases and topoisomerases. Cell 93, 149–152 (1998).

    CAS  PubMed  Google Scholar 

  35. Lee, L. & Sadowski, P.D. Directional resolution of synthetic holliday structures by the Cre recombinase. J. Biol. Chem. 276, 31092–31098 (2001).

    CAS  PubMed  Google Scholar 

  36. Lee, L., Chu, L.C. & Sadowski, P.D. Cre induces an asymmetric DNA bend in its target loxP site. J. Biol. Chem. 278, 23118–23129 (2003).

    CAS  PubMed  Google Scholar 

  37. Lee, L. & Sadowski, P.D. Strand selection by the tyrosine recombinases. in Progress in Nucleic Acid Research and Molecular Biology, Vol. 80 (ed. Moldave, K.) 1–42 (2005).

    Google Scholar 

  38. Voziyanov, Y., Lee, J., Whang, I. & Jayaram, M. Analyses of the first chemical step in Flp site-specific recombination: synapsis may not be a pre-requisite for strand cleavage. J. Mol. Biol. 256, 720–735 (1996).

    CAS  PubMed  Google Scholar 

  39. Ghosh, K. & Van Duyne, G.D. Cre-loxP biochemistry. Methods 28, 374–383 (2002).

    CAS  PubMed  Google Scholar 

  40. Gill, S.C. & von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).

    CAS  PubMed  Google Scholar 

  41. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    CAS  PubMed  Google Scholar 

  42. Hoess, R.H., Wierzbicki, A. & Abremski, K. The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res. 14, 2287–2300 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Hoess for valuable discussions and insightful comments regarding this manuscript. This work was supported by a grant from the US National Institutes of Health. G.D.V. is Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D Van Duyne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

DNA Sequences. (PDF 486 kb)

Supplementary Fig. 2

Concentration of loxP (nM) (PDF 1866 kb)

Supplementary Methods (PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, K., Lau, CK., Gupta, K. et al. Preferential synapsis of loxP sites drives ordered strand exchange in Cre-loxP site-specific recombination. Nat Chem Biol 1, 275–282 (2005). https://doi.org/10.1038/nchembio733

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio733

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing