Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A carbohydrate-antioxidant hybrid polymer reduces oxidative damage in spermatozoa and enhances fertility

Abstract

Gamete-gamete interactions are critically modulated by carbohydrate-protein interactions that rely on the carbohydrate-selective recognition of polyvalent carbohydrate structures1,2. A galactose-binding protein has been identified in mammalian spermatozoa3 that has similarity to the well-characterized hepatic asialoglycoprotein receptor4. With the aim of exploiting the ability of this class of proteins to bind and internalize macromolecules displaying galactose, we designed hybrid carbohydrate-antioxidant polymers to deliver antioxidant vitamin E (α-tocopherol) to porcine spermatozoa. Treatment of sperm cells with one hybrid polymer in particular produced large increases in intracellular sperm levels of α-tocopherol and greatly reduced endogenous fatty acid degradation under oxidative stress. The polymer-treated spermatozoa had enhanced physiological properties and longer half-lives, which resulted in enhanced fertilization rates. Our results indicate that hybrid polymer delivery systems can prolong the functional viability of mammalian spermatozoa and improve fertility rates, and that our functionally guided optimization strategy can be applied to the discovery of active glycoconjugate ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of glycoconjugate polymer ligands for endocytosis.
Figure 2: Fluorescence microscopy of spermatozoa.
Figure 3: Enhancement of sperm parameters upon treatment.

Similar content being viewed by others

References

  1. Millette, C.F. Distribution and mobility of lectin binding sites on mammalian spermatozoa. Clin. Exp. Immunoreprod. 4, 51–71 (1977).

    CAS  Google Scholar 

  2. Benoff, S. Carbohydrates and fertilization: an overview. Mol. Hum. Reprod. 3, 599–637 (1997).

    Article  CAS  Google Scholar 

  3. Abdullah, M., Widgren, E.E. & O'Rand, M.G. A mammalian sperm lectin related to rat hepatocyte lectin. Mol. Cell. Biochem. 103, 155–161 (1991).

    Article  CAS  Google Scholar 

  4. Ashwell, G. & Morell, A.G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. 41, 99–128 (1974).

    CAS  PubMed  Google Scholar 

  5. British Nutrition Foundation, ed. Unsaturated Fatty Acids. Nutritional and Physiological Siginificance. The Report of the British Nutrition Foundation's Task Force. (Chapman and Hall, London, 1992).

  6. Cohn, W. et al. Tocopherol transport and absorption. Proc. Nutr. Soc. 51, 179–188 (1992).

    Article  CAS  Google Scholar 

  7. Aitken, R.J. & Baker, M.A. Reactive oxygen species generation by human spermatazoa: a continuing enigma. Int. J. Androl. 25, 191–194 (2002).

    Article  Google Scholar 

  8. Cerolini, S., Maldjian, A., Surai, P. & Noble, R.C. Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage. Anim. Reprod. Sci. 58, 99–111 (2000).

    Article  CAS  Google Scholar 

  9. Tulsiani, D.R. & Abou-Haila, A. Mammalian sperm molecules that are potentially important in interaction with female genital tract and egg vestments. Zygote 9, 51–69 (2001).

    Article  CAS  Google Scholar 

  10. Topfer-Petersen, E. Carbohydrate-based interactions on the route of a spermatozoon to fertilization. Hum. Reprod. Update 5, 314–329 (1999).

    Article  CAS  Google Scholar 

  11. Nixon, B. et al. Galactosyltransferase function during mammalian fertilization. Cells Tissues Organs 168, 46–57 (2001).

    Article  CAS  Google Scholar 

  12. Davis, B.G. & Robinson, M.A. Drug delivery systems based on sugar-macromolecule conjugates. Curr. Opin. Drug Discov. Devel. 5, 279–288 (2002).

    CAS  PubMed  Google Scholar 

  13. Duncan, R., Kopecek, J., Rejmanova, P. & Lloyd, J.B. Targeting of N-(2-hydroxypropyl)methacrylamide copolymers to liver by incorporation of galactose residues. Biochim. Biophys. Acta 755, 518–521 (1983).

    Article  CAS  Google Scholar 

  14. Mammen, M., Chio, S.-K. & Whitesides, G.M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Edn. Engl. 37, 2755–2794 (1998).

    Article  CAS  Google Scholar 

  15. Ambrosi, M., Cameron, N.R. & Davis, B.G. Lectins: tools for the molecular understanding of the glycocode. Org. Biomol. Chem. 3, 1593–1608 (2005).

    Article  CAS  Google Scholar 

  16. Gabius, H.-J., Siebert, H.-C., Andre, S., Jimenez-Barbero, J. & Ruediger, H. Chemical biology of the sugar code. ChemBioChem 5, 740–764 (2004).

    Article  CAS  Google Scholar 

  17. Lee, Y.C. et al. Binding of synthetic oligosaccharides to the hepatic Gal GalNac lectin - dependence on fine-structural features. J. Biol. Chem. 258, 199–202 (1983).

    CAS  PubMed  Google Scholar 

  18. Choi, S.-K., Mammen, M. & Whitesides, G.M. Generation and in situ evaluation of libraries of poly(acrylic acid) presenting sialosides as side chains as polyvalent inhibitors of influenza-mediated hemagglutination. J. Am. Chem. Soc. 119, 4103–4111 (1997).

    Article  CAS  Google Scholar 

  19. Arranz-Plaza, E., Tracy, A.S., Siriwardena, A., Pierce, J.M. & Boons, G-J. High-avidity, low-affinity multivalent interactions and the block to polyspermy in Xenopus laevis. J. Am. Chem. Soc. 124, 13035–13046 (2002).

    Article  CAS  Google Scholar 

  20. Ladmiral, V., Melia, E. & Haddleton, D.M. Synthetic glycopolymers: an overview. Eur. Polym. J. 40, 431–449 (2004).

    Article  CAS  Google Scholar 

  21. Rihova, B. Receptor-mediated targeted drug or toxin delivery. Adv. Drug Deliv. Rev. 29, 273–289 (1998).

    Article  CAS  Google Scholar 

  22. Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Symp. 51, 135–153 (1975).

    Article  CAS  Google Scholar 

  23. Ambrosi, M. et al. Influence of preparation procedure on polymer composition: synthesis and characterisation of polymethacrylates bearing β-D-glucopyranoside and β-D-galactopyranoside residues. J. Chem. Soc. Perkin Trans. I, 45–52 (2002).

    Google Scholar 

  24. Hoyes, K., Nettleton, J., Lawson, R. & Morris, I. Transferrin-dependent uptake and dosimetry of Auger-emitting diagnostic radionuclides in human spermatozoa. J. Nucl. Med. 39, 895–899 (1998).

    CAS  PubMed  Google Scholar 

  25. Morales, C.R. Role of sialic acid in the endocytosis of prosaposin by the conciliated cells of the rat efferent ducts. Mol. Reprod. Dev. 51, 156–166 (1998).

    Article  CAS  Google Scholar 

  26. Ohkawa, H., Nobuko, O. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979).

    Article  CAS  Google Scholar 

  27. Evenson, D., Larson, K. & Jost, L. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J. Androl. 23, 25–43 (2002).

    Article  Google Scholar 

  28. Fraga, C.G., Motchnik, P.A., Wyrobek, A.J., Rempel, D.M. & Ames, B.N. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat. Res. 351, 199–203 (1996).

    Article  Google Scholar 

  29. Perez-Pe, R. et al. Prediction of fertility by centrifugal countercurrent distribution (CCCD) analysis: correlation between viability and heterogeneity of ram semen and field fertility. Reproduction 123, 869–875 (2002).

    Article  CAS  Google Scholar 

  30. Ambrosi, M., Cameron, N.R., Davis, B.G. & Stolnik, S. Investigation of the interaction between peanut agglutinin and synthetic glycopolymeric multivalent ligands. Org. Biomol. Chem. 3, 1476–1480 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank JSR Healthbred and the UK Department of Trade and Industry (DTI) for funding (DTI Smart Award), R. Hunter (Unilever) for advice and technical assistance with GPC determinations, K. Harrison for video assistance, and M. Alvarez-Reyes for assistance with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neil R Cameron or Benjamin G Davis.

Ethics declarations

Competing interests

A.M., P.P. and R.C.N. are/have been employees of JSR Healthbred who may have longer-term goals in exploiting this technology. An initial patent application has now lapsed.

Supplementary information

Supplementary Table 1

Composition of terpolymers. (PDF 59 kb)

Supplementary Video 1

Treated sperm at Day 3. (MOV 8496 kb)

Supplementary Video 2

Untreated sperm at Day 3. (MOV 7421 kb)

Supplementary Scheme 1

Monomer synthesis. (PDF 82 kb)

Supplementary Scheme 2

Polymer synthesis. (PDF 94 kb)

Supplementary Methods (PDF 2992 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, C., Maldjian, A., Da Costa, D. et al. A carbohydrate-antioxidant hybrid polymer reduces oxidative damage in spermatozoa and enhances fertility. Nat Chem Biol 1, 270–274 (2005). https://doi.org/10.1038/nchembio730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing