Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine

Abstract

Nitric oxide (NO) signaling through the formation of cGMP is well established; however, there seems to be an increasing role for cGMP-independent NO signaling. Although key molecular details remain unanswered, S-nitrosation represents an example of cGMP-independent NO signaling. This modification has garnered recent attention as it has been shown to modulate the function of several important biochemical pathways1,2,3. Although an analogy to O-phosphorylation can be drawn4, little is known about protein nitrosothiol regulation in vivo. In solution, NO readily reacts with oxygen to yield a nitrosating agent, but this process alone provides no specificity for nitrosation5. This lack of specificity is exemplified by the in vitro poly-S-nitrosation of caspase-3 (Casp-3, ref. 6) and the ryanodine receptor7. Previous in vivo work with Casp-3 suggests that a protein-assisted process may be responsible for selective S-nitrosation of the catalytic cysteine (Cys163)8. We demonstrated that a single cysteine in thioredoxin (Trx) is capable of a targeted, reversible transnitrosation reaction with Cys163 of Casp-3. A greater understanding of how S-nitrosation is mediated has broad implications for cGMP-independent signaling. The example described here also suggests a new role for Trx in the regulation of apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct transnitrosation with Casp-3 and Trx.
Figure 2: S-Nitrosation of the catalytic nucleophile of Casp-3 by Trx-Cys73-SNO.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

Protein Data Bank

References

  1. Foster, M.W., McMahon, T.J. & Stamler, J.S. S-nitrosylation in health and disease. Trends Mol. Med. 9, 160–168 (2003).

    Article  CAS  Google Scholar 

  2. Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E. & Stamler, J.S. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150–166 (2005).

    Article  CAS  Google Scholar 

  3. Hess, D.T., Matsumoto, A., Nudelman, R. & Stamler, J.S. S-nitrosylation: spectrum and specificity. Nat. Cell Biol. 3, E46–E49 (2001).

    Article  CAS  Google Scholar 

  4. Lane, P., Hao, G. & Gross, S.S. S-nitrosylation is emerging as a specific and fundamental posttranslational protein modification: head-to-head comparison with O-phosphorylation. Sci. STKE 2001, RE1 (2001).

    CAS  PubMed  Google Scholar 

  5. Keshive, M., Singh, S., Wishnok, J.S., Tannenbaum, S.R. & Deen, W.M. Kinetics of S-nitrosation of thiols in nitric oxide solutions. Chem. Res. Toxicol. 9, 988–993 (1996).

    Article  CAS  Google Scholar 

  6. Zech, B., Wilm, M., van Eldik, R. & Brune, B. Mass spectrometric analysis of nitric oxide-modified caspase-3. J. Biol. Chem. 274, 20931–20936 (1999).

    Article  CAS  Google Scholar 

  7. Xu, L., Eu, J.P., Meissner, G. & Stamler, J.S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279, 234–237 (1998).

    Article  CAS  Google Scholar 

  8. Mannick, J.B. et al. Fas-induced caspase denitrosylation. Science 284, 651–654 (1999).

    Article  CAS  Google Scholar 

  9. Nicholson, D.W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).

    Article  CAS  Google Scholar 

  10. Thornberry, N.A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  Google Scholar 

  11. Mannick, J.B., Asano, K., Izumi, K., Kieff, E. & Stamler, J.S. Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79, 1137–1146 (1994).

    Article  CAS  Google Scholar 

  12. Brune, B., von Knethen, A. & Sandau, K.B. Nitric oxide and its role in apoptosis. Eur. J. Pharmacol. 351, 261–272 (1998).

    Article  CAS  Google Scholar 

  13. Mohr, S., Zech, B., Lapetina, E.G. & Brune, B. Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochem. Biophys. Res. Commun. 238, 387–391 (1997).

    Article  CAS  Google Scholar 

  14. Zech, B., Kohl, R., von Knethen, A. & Brune, B. Nitric oxide donors inhibit formation of the Apaf-1/caspase-9 apoptosome and activation of caspases. Biochem. J. 371, 1055–1064 (2003).

    Article  CAS  Google Scholar 

  15. Maejima, Y., Adachi, S., Morikawa, K., Ito, H. & Isobe, M. Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. J. Mol. Cell. Cardiol. 38, 163–174 (2005).

    Article  CAS  Google Scholar 

  16. Kim, J.E. & Tannenbaum, S.R. S-Nitrosation regulates the activation of endogenous procaspase-9 in HT-29 human colon carcinoma cells. J. Biol. Chem. 279, 9758–9764 (2004).

    Article  CAS  Google Scholar 

  17. Powis, G. & Montfort, W.R. Properties and biological activities of thioredoxins. Annu. Rev. Pharmacol. Toxicol. 41, 261–295 (2001).

    Article  CAS  Google Scholar 

  18. Haendeler, J. et al. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat. Cell Biol. 4, 743–749 (2002).

    Article  CAS  Google Scholar 

  19. Tao, L. et al. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation [corrected]. Proc. Natl. Acad. Sci. USA 101, 11471–11476 (2004).

    Article  Google Scholar 

  20. Jaffrey, S.R. & Snyder, S.H. The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE 2001, PL1 (2001).

    CAS  PubMed  Google Scholar 

  21. Rotonda, J. et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat. Struct. Biol. 3, 619–625 (1996).

    Article  CAS  Google Scholar 

  22. Cook, J.A. et al. Convenient colorimetric and fluorometric assays for S-nitrosothiols. Anal. Biochem. 238, 150–158 (1996).

    Article  CAS  Google Scholar 

  23. Nikitovic, D. & Holmgren, A. S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J. Biol. Chem. 271, 19180–19185 (1996).

    Article  CAS  Google Scholar 

  24. Sliskovic, I., Raturi, A. & Mutus, B. Characterization of the S-denitrosation activity of protein disulfide isomerase. J. Biol. Chem. 280, 8733–8741 (2005).

    Article  CAS  Google Scholar 

  25. Qin, J., Clore, G.M. & Gronenborn, A.M. The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin. Structure 2, 503–522 (1994).

    Article  CAS  Google Scholar 

  26. Mitchell, D.A., Erwin, P.A., Michel, T. & Marletta, M.A. S-Nitrosation and regulation of inducible nitric oxide synthase. Biochemistry 44, 4636–4647 (2005).

    Article  CAS  Google Scholar 

  27. Holmgren, A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J. Biol. Chem. 254, 9627–9632 (1979).

    CAS  PubMed  Google Scholar 

  28. Ren, X., Bjornstedt, M., Shen, B., Ericson, M.L. & Holmgren, A. Mutagenesis of structural half-cystine residues in human thioredoxin and effects on the regulation of activity by selenodiglutathione. Biochemistry 32, 9701–9708 (1993).

    Article  CAS  Google Scholar 

  29. Rossi, R. et al. A method to study kinetics of transnitrosation with nitrosoglutathione: reactions with hemoglobin and other thiols. Anal. Biochem. 254, 215–220 (1997).

    Article  CAS  Google Scholar 

  30. Wang, K. et al. Equilibrium and kinetics studies of transnitrosation between S-nitrosothiols and thiols. Bioorg. Med. Chem. Lett. 11, 433–436 (2001).

    Article  CAS  Google Scholar 

  31. Thornberry, N.A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  Google Scholar 

  32. Gow, A.J., Buerk, D.G. & Ischiropoulos, H. A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J. Biol. Chem. 272, 2841–2845 (1997).

    Article  CAS  Google Scholar 

  33. Zhang, J., Li, Y.D., Patel, J.M. & Block, E.R. Thioredoxin overexpression prevents NO-induced reduction of NO synthase activity in lung endothelial cells. Am. J. Physiol. 275, L288–L293 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank A. Falick (University of California, Berkeley) for acquiring the CID spectra. We also thank members of the Marletta laboratory for helpful discussions and critical review of the manuscript. This work is supported in part by grants from the DeBenedictis Fund of University of California, Berkeley to M.A.M. and US National Institutes of Health grant CA 26731.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A Marletta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Purification of caspase-3, wild-type thioredoxin and C73S thioredoxin. (PDF 1070 kb)

Supplementary Fig. 2

S-Nitrosation and S-glutathiolation of the catalytic nucleophile (C163) of caspase-3 by excess GSNO. (PDF 96 kb)

Supplementary Fig. 3

Poly-S-nitrosation of caspase-3. (PDF 94 kb)

Supplementary Fig. 4

S-Nitrosation of C73 of thioredoxin by excess GSNO. (PDF 55 kb)

Supplementary Fig. 5

Collision-induced dissociation spectra. (PDF 394 kb)

Supplementary Fig. 6

Caspase-3-C163-SNO S-nitrosates C73 of His-Trx. (PDF 118 kb)

Supplementary Methods (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, D., Marletta, M. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1, 154–158 (2005). https://doi.org/10.1038/nchembio720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing