Abstract
Synthetic biology promises the ability to program cells with new functions. Simple oscillators, switches, logic functions, cell-cell communication and pattern-forming circuits have been created by the connection of a small set of natural transcription factors and their binding sites in different ways to produce different networks of molecular interactions. However, the controlled synthesis of more complex synthetic networks and functions will require an expanded set of functional molecules with known molecular specificities. Here, we tailored the molecular specificity of duplicated Escherichia coli ribosome·mRNA pairs with respect to the wild-type ribosome and mRNAs to produce multiple orthogonal ribosome·orthogonal mRNA pairs that can process information in parallel with, but independent of, their wild-type progenitors. In these pairs, the ribosome exclusively translates the orthogonal mRNA, and the orthogonal mRNA is not a substrate for cellular ribosomes. We predicted and measured the network of interactions between orthogonal ribosomes and orthogonal mRNAs, and showed that they can be used to post-transcriptionally program the cell with Boolean logic.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier
Nature Methods Open Access 01 August 2022
-
Direct measurements of mRNA translation kinetics in living cells
Nature Communications Open Access 06 April 2022
-
Targeted editing and evolution of engineered ribosomes in vivo by filtered editing
Nature Communications Open Access 10 January 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Accession codes
References
Gibbs, W.W. Synthetic life. Sci. Am. 290, 74–81 (2004).
Brent, R. A partnership between biology and engineering. Nat. Biotechnol. 22, 1211–1214 (2004).
Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).
Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).
Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).
Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002).
Kaern, M., Blake, W.J. & Collins, J.J. The engineering of gene regulatory networks. Annu. Rev. Biomed. Eng. 5, 179–206 (2003).
Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA 101, 8414–8419 (2004).
Yokobayashi, Y., Weiss, R. & Arnold, F.H. Directed evolution of a genetic circuit. Proc. Natl. Acad. Sci. USA 99, 16587–16591 (2002).
You, L., Cox, R.S., III, Weiss, R. & Arnold, F.H. Programmed population control by cell-cell communication and regulated killing. Nature 428, 868–871 (2004).
Isaacs, F.J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).
Ohno, S. Evolution by Gene Duplication (Springer-Verlag, Heidelberg, 1970).
Taylor, J.S. & Raes, J. Duplication and divergence: the evolution of new genes and old ideas. Annu. Rev. Genet. 38, 615–643 (2004).
Teichmann, S.A. & Babu, M.M. Gene regulatory network growth by duplication. Nat. Genet. 36, 492–496 (2004).
Lynch, M. & Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).
Stillman, B. (ed.). The Ribosome, Vol. LXVI (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2001).
Laursen, B.S., Sorensen, H.P., Mortensen, K.K. & Sperling-Petersen, H.U. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69, 101–123 (2005).
Wikstrom, P.M., Lind, L.K., Berg, D.E. & Bjork, G.R. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli. J. Mol. Biol. 224, 949–966 (1992).
Shine, J. & Dalgarno, L. Identical 3′-terminal octanucleotide sequence in 18S ribosomal ribonucleic acid from different eukaryotes. A proposed role for this sequence in the recognition of terminator codons. Biochem. J. 141, 609–615 (1974).
Steitz, J.A. & Jakes, K. How ribosomes select initiator regions in mRNA: base pair formation between the 3′ terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 72, 4734–4738 (1975).
Yusupova, G.Z., Yusupov, M.M., Cate, J.H. & Noller, H.F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).
Chen, H., Bjerknes, M., Kumar, R. & Jay, E. Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res. 22, 4953–4957 (1994).
Gottesman, S. et al. Small RNA regulators of translation: mechanisms of action and approaches for identifying new small RNAs. in The Ribosome Vol. LXVI (ed. Stillman, B.) 353–362 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2001).
Looman, A.C., Bodlaender, J., de Gruyter, M., Vogelaar, A. & van Knippenberg, P.H. Secondary structure as primary determinant of the efficiency of ribosomal binding sites in Escherichia coli. Nucleic Acids Res. 14, 5481–5497 (1986).
Liebhaber, S.A., Cash, F. & Eshleman, S.S. Translation inhibition by an mRNA coding region secondary structure is determined by its proximity to the AUG initiation codon. J. Mol. Biol. 226, 609–621 (1992).
Winkler, W., Nahvi, A. & Breaker, R.R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).
Shultzaberger, R.K., Bucheimer, R.E., Rudd, K.E. & Schneider, T.D. Anatomy of Escherichia coli ribosome binding sites. J. Mol. Biol. 313, 215–228 (2001).
Hui, A.S., Eaton, D.H. & de Boer, H.A. Mutagenesis at the mRNA decoding site in the 16S ribosomal RNA using the specialized ribosome system in Escherichia coli. EMBO J. 7, 4383–4388 (1988).
Hui, A., Jhurani, P. & de Boer, H.A. Directing ribosomes to a single mRNA species: a method to study ribosomal RNA mutations and their effects on translation of a single messenger in Escherichia coli. Methods Enzymol. 153, 432–452 (1987).
Hui, A. & de Boer, H.A. Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 4762–4766 (1987).
Lee, K., Holland-Staley, C.A. & Cunningham, P.R. Genetic analysis of the Shine-Dalgarno interaction: selection of alternative functional mRNA-rRNA combinations. RNA 2, 1270–1285 (1996).
Wood, T.K. & Peretti, S.W. Construction of a specialized ribosome vector for cloned-gene expression in E. coli. Biotechnol. Bioeng. 38, 891–906 (1991).
Jacob, W.F., Santer, M. & Dahlberg, A.E. A single base change in the Shine-Dalgarno region of 16S rRNA of Escherichia coli affects translation of many proteins. Proc. Natl. Acad. Sci. USA 84, 4757–4761 (1987).
Galvao, T.C. & de Lorenzo, V. Adaptation of the yeast URA3 selection system to gram-negative bacteria and generation of a ΔbetCDE Pseudomonas putida strain. Appl. Environ. Microbiol. 71, 883–892 (2005).
Rasmussen, U.B., Mygind, B. & Nygaard, P. Purification and some properties of uracil phosphoribosyltransferase from Escherichia coli K12. Biochim. Biophys. Acta 881, 268–275 (1986).
Neuhard, J. in Metabolism of Nucleotides, Nucleosides, and Nucleobases in Microorganisms (ed. Munch-Petersen, O.) 95–148 (Academic Press, New York, 1983).
Leslie, A.G. Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 A resolution. J. Mol. Biol. 213, 167–186 (1990).
Ladner, R.C. in Phage Display of Peptides and Proteins (eds. Kay, B.K., Winter, J. & McCafferty, J.) 151–194 (Academic Press, San Diego, 1996).
Sigmund, C.D., Ettayebi, M. & Morgan, E.A. Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 12, 4653–4663 (1984).
Ullmann, A., Jacob, F. & Monod, J. Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the β-galactosidase structural gene of Escherichia coli. J. Mol. Biol. 24, 339–343 (1967).
Freier, S.M. et al. Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83, 9373–9377 (1986).
Freier, S.M., Kierzek, R., Caruthers, M.H., Neilson, T. & Turner, D.H. Free energy contributions of G.U and other terminal mismatches to helix stability. Biochemistry 25, 3209–3213 (1986).
Schurr, T., Nadir, E. & Margalit, H. Identification and characterization of E. coli ribosomal binding sites by free energy computation. Nucleic Acids Res. 21, 4019–4023 (1993).
Osada, Y., Saito, R. & Tomita, M. Analysis of base-pairing potentials between 16S rRNA and 5′ UTR for translation initiation in various prokaryotes. Bioinformatics 15, 578–581 (1999).
Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).
Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005).
Crick, F. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).
Magliery, T.J., Anderson, J.C. & Schultz, P.G. Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in Escherichia coli. J. Mol. Biol. 307, 755–769 (2001).
Anderson, J.C., Magliery, T.J. & Schultz, P.G. Exploring the limits of codon and anticodon size. Chem. Biol. 9, 237–244 (2002).
Acknowledgements
We thank H. Noller (University of California, Santa Cruz) for plasmids encoding the rrnB operon, J.C. Anderson (University of California, San Francisco) for GH371 E. coli, and B.L Wanner (Purdue University) for BW26444 E. coli.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Table 1
Model selections (PDF 54 kb)
Rights and permissions
About this article
Cite this article
Rackham, O., Chin, J. A network of orthogonal ribosome·mRNA pairs. Nat Chem Biol 1, 159–166 (2005). https://doi.org/10.1038/nchembio719
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchembio719
This article is cited by
-
Targeted editing and evolution of engineered ribosomes in vivo by filtered editing
Nature Communications (2022)
-
Three-dimensional structure-guided evolution of a ribosome with tethered subunits
Nature Chemical Biology (2022)
-
Direct measurements of mRNA translation kinetics in living cells
Nature Communications (2022)
-
Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier
Nature Methods (2022)
-
Shackled ribosomes unleashed
Nature Chemical Biology (2022)