Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Linking agonist binding to histamine H1 receptor activation

Abstract

G protein–coupled receptors (GPCRs) constitute a large and functionally diverse family of transmembrane proteins. They are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways and are among the most targeted proteins in drug discovery. The detailed molecular mechanism for agonist-induced activation of rhodopsin-like GPCRs has not yet been described. Using a combination of site-directed mutagenesis and molecular modeling, we characterized important steps in the activation of the human histamine H1 receptor. Both Ser3.36 and Asn7.45 are important links between histamine binding and previously proposed conformational changes in helices 6 and 7. Ser3.36 acts as a rotamer toggle switch that, upon agonist binding, initiates the activation of the receptor through Asn7.45. The proposed transduction involves specific residues that are conserved among rhodopsin-like GPCRs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modeling of the human H1R.
Figure 2: Characterization of wild-type (WT) and Ser3.36 mutant H1Rs.
Figure 3: Characterization of wild-type (WT) and Asn7.45 mutant H1Rs.
Figure 4: Proposed model of H1R activation.

Similar content being viewed by others

References

  1. Unger, V.M., Hargrave, P.A., Baldwin, J.M. & Schertler, G.F. Arrangement of rhodopsin transmembrane α-helices. Nature 38, 203–206 (1997).

    Article  CAS  Google Scholar 

  2. Palczewski, K. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Deupi, X. et al. Conformational plasticity of GPCR binding sites; structural basis for evolutionary diversity in ligand recognition. in The G Protein-Coupled Receptors Handbook (ed. Devi, L.A.) (Humana Press, Totowa, 2005).

    Google Scholar 

  4. Mirzadegan, T., Benko, G., Filipek, S. & Palczewski, K. Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 42, 2759–2767 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Shi, L. & Javitch, J.A. The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu. Rev. Pharmacol. Toxicol. 42, 437–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Ballesteros, J.A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein coupled receptors. Methods Neurosci. 25, 366–428 (1995).

    Article  CAS  Google Scholar 

  7. Ohta, K. et al. Site-directed mutagenesis of the histamine H1 receptor: roles of aspartic acid107, asparagine198 and threonine194. Biochem. Biophys. Res. Commun. 203, 1096–1101 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Nonaka, H. et al. Unique binding pocket for KW-4679 in the histamine H1 receptor. Eur. J. Pharmacol. 345, 111–117 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Bruysters, M. et al. Mutational analysis of the histamine H1-receptor binding pocket of histaprodifens. Eur. J. Pharmacol. 487, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Moguilevsky, N., Differding, E., Gillard, M. & Bollen, A. Rational drug design using mammalian cell lines expressing site-directed mutants of the human H1 histamine receptor. in Animal Cell Technology: Basic & Applied Aspects, Vol. 9 (eds. Nagai, K. & Wachi, M.) 65–69 (Kluwer Academic Publishers, Dordrecht, 1998).

    Chapter  Google Scholar 

  11. Wieland, K. et al. Mutational analysis of the antagonist-binding site of the histamine H1 receptor. J. Biol. Chem. 274, 29994–30000 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Gillard, M., Van Der Perren, C., Moguilevsky, N., Massingham, R. & Chatelain, P. Binding characteristics of cetirizine and levocetirizine to human H1 histamine receptors: contribution of Lys191 and Thr194. Mol. Pharmacol. 61, 391–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Leurs, R., Smit, M.J., Meeder, R., Ter Laak, A.M. & Timmerman, H. Lysine200 located in the fifth transmembrane domain of the histamine H1 receptor interacts with histamine but not with all H1 agonists. Biochem. Biophys. Res. Commun. 214, 110–117 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Leurs, R., Smit, M.J., Tensen, C.P., Ter Laak, A.M. & Timmerman, H. Site-directed mutagenesis of the histamine H1-receptor reveals a selective interaction of asparagine207 with subclasses of H1-receptor agonsits. Biochem. Biophys. Res. Commun. 201, 295–301 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Moguilevsky, N. et al. Pharmacological and functional characterisation of the wild-type and site-directed mutants of the human H1 histamine receptor stably expressed in CHO cells. J. Recept. Signal Transduct. Res. 15, 91–102 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Visiers, I., Ballesteros, J.A. & Weinstein, H. Three-dimensional representations of G protein-coupled receptor structures and mechanisms. Methods Enzymol. 343, 329–371 (2002).

    Article  PubMed  Google Scholar 

  17. Shi, L. et al. β2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J. Biol. Chem. 277, 40989–40996 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Ruprecht, J.J., Mielke, T., Vogel, R., Villa, C. & Schertler, G.F.X. Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 23, 3609–3620 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ballesteros, J.A. et al. Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 276, 29171–29177 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Visiers, I. et al. Structural motifs as functional microdomains in G-protein-coupled receptors: energetic considerations in the mechanism of activation of the serotonin 5-HT2A receptor by disruption of the ionic lock of the arginine cage. Int. J. Quantum Chem. 88, 65–75 (2002).

    Article  CAS  Google Scholar 

  21. Scheer, A., Fanelli, F., Costa, T., De Benedetti, P.G. & Cotecchia, S. The activation process of the α1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate. Proc. Natl. Acad. Sci. USA 94, 808–813 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oliveira, L., Paiva, A.C.M., Sander, C. & Vriend, G. A model for G protein interaction in G protein coupled receptors. Trends Pharmacol. Sci. 15, 170–172 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Ghanouni, P. et al. The effect of pH on β2 adrenoceptor function. Evidence for protonation-dependent activation. J. Biol. Chem. 275, 3121–3127 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Farrens, D.L., Altenbach, C., Yang, K., Hubbell, W.L. & Khorana, H.G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Gether, U., Asmar, F., Meinild, A.K. & Rasmussen, S.G.F. Structural basis for activation of G-protein-coupled receptors. Pharmacol. Toxicol. 91, 304–312 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Meng, E.C. & Bourne, H.R. Receptor activation: what does the rhodopsin structure tell us? Trends Pharmacol. Sci. 22, 587–593 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Govaerts, C. et al. A conserved Asn in transmembrane helix 7 is an on/off switch in the activation of the thyrotropin receptor. J. Biol. Chem. 276, 22991–22999 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Urizar, E. et al. An activation switch in the rhodopsin family of G protein coupled receptors: the thyrotropin receptor. J. Biol. Chem. 280, 17135–17141 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Claeysen, S. et al. A conserved Asn in TM7 of the thyrotropin receptor is a common requirement for activation by both mutations and its natural agonist. FEBS Lett. 517, 195–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Hubbell, W.L., Altenbach, C., Hubbell, C.M. & Khorana, H.G. Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv. Protein Chem. 63, 243–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Almaula, N., Ebersole, B.J., Zhang, D., Weinstein, H. & Sealfon, S.C. Mapping the binding site pocket of the serotonin 5-hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin. J. Biol. Chem. 271, 14672–14675 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Akabas, M.H., Stauffer, D.A., Xu, M. & Karlin, A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258, 307–310 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Bakker, R.A., Schoonus, S.B., Smit, M.J., Timmerman, H. & Leurs, R. Histamine H1-receptor activation of nuclear factor-κB: roles for Gβγ- and Gαq/11-subunits in constitutive and agonist-mediated signaling. Mol. Pharmacol. 60, 1133–1142 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Ballesteros, J.A., Deupi, X., Olivella, M., Haaksma, E.E.J. & Pardo, L. Serine and threonine residues bend α-helices in the χ1 = g− conformation. Biophys. J. 79, 2754–2760 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McAllister, S.D. et al. Structural mimicry in class A G protein-coupled receptor rotamer toggle switches: the importance of the F3.36(201)/W6.48(357) interaction in cannabinoid CB1 receptor activation. J. Biol. Chem. 279, 48024–48037 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Li, J., Edwards, P.C., Burghammer, M., Villa, C. & Schertler, G.F.X. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343, 1409–1438 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Goldman, L.A., Cutrone, E.C., Kotenko, S.V., Krause, C.D. & Langer, J.A. Modifications of vectors pEF-BOS, pcDNA1 and pcDNA3 result in improved convenience and expression. Biotechniques 21, 1013–1015 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Fukui, H. et al. Molecular cloning of the human histamine H1 receptor gene. Biochem. Biophys. Res. Commun. 201, 894–901 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  40. Okada, T. et al. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc. Natl. Acad. Sci. USA 99, 5982–5987 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. López-Rodriguez, M.L. et al. Design, synthesis and pharmacological evaluation of 5-hydroxytryptamine1a receptor ligands to explore the three-dimensional structure of the receptor. Mol. Pharmacol. 62, 15–21 (2002).

    Article  PubMed  Google Scholar 

  42. Shi, L. & Javitch, J.A. The second extracellular loop of the dopamine D2 receptor lines the binding-site crevice. Proc. Natl. Acad. Sci. USA 101, 440–445 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Canutescu, A.A., Shelenkov, A.A. & Dunbrack, R.L., Jr. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 12, 2001–2014 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Case, D.A. et al. AMBER 8. (University of California, San Francisco, 2004).

  45. Wang, J., Cieplak, P. & Kollman, P.A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074 (2000).

    Article  CAS  Google Scholar 

  46. Frisch, M.J. et al. Gaussian 98, Revision A.11. (Gaussian Inc., Pittsburgh Pennsylvania, 2001).

    Google Scholar 

  47. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J. Springer for sharing his experimental results. UCB Pharma and the National Institute of Mental Health (grant R01MH068655-01A1) are gratefully acknowledged for their financial support of our H1R research. We thank the European Community (LSHB-CT-2003-503337) and Ministerio de Ciencia y Technología (SAF2002-01509) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Leurs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Affinities and expression levels of WT and several human H1R mutants. (PDF 108 kb)

Supplementary Table 2

Cross-reference table for amino acids described in the manuscript. (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jongejan, A., Bruysters, M., Ballesteros, J. et al. Linking agonist binding to histamine H1 receptor activation. Nat Chem Biol 1, 98–103 (2005). https://doi.org/10.1038/nchembio714

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing