Nitrite has now been proposed to play an important physiological role in signaling, blood flow regulation and hypoxic nitric oxide homeostasis. A recent two-day symposium at the US National Institutes of Health highlighted recent advances in the understanding of nitrite biochemistry, physiology and therapeutics.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
White matter damage as a consequence of vascular dysfunction in a spontaneous mouse model of chronic mild chronic hypoperfusion with eNOS deficiency
Molecular Psychiatry Open Access 10 August 2022
-
Novel gene similar to nitrite reductase (NO forming) plays potentially important role in the latency of tuberculosis
Scientific Reports Open Access 06 October 2021
-
Low dose nitrite improves reoxygenation following renal ischemia in rats
Scientific Reports Open Access 03 November 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Rodriguez, J., Maloney, R.E., Rassaf, T., Bryan, N.S. & Feelisch, M. Proc. Natl. Acad. Sci. USA 100, 336–341 (2003).
Cosby, K. et al. Nat. Med. 9, 1498–1505 (2003).
Bryan, N.S. et al. Nat. Chem. Biol. 1, 290–297 (2005).
Zweier, J.L., Wang, P., Samouilov, A. & Kuppusamy, P. Nat. Med. 1, 804–809 (1995).
Webb, A. et al. Proc. Natl. Acad. Sci. USA 101, 13683–13688 (2004).
Duranski, M.R. et al. J. Clin. Invest. 115, 1232–1240 (2005).
Bryan, N.S. et al. Proc. Natl. Acad. Sci. USA 101, 4308–4313 (2004).
Wink, D.A. Nat. Med. 9, 1460–1461 (2003).
Eiserich, J.P. et al. Nature 391, 393–397 (1998).
Brennan, M.L. et al. J. Biol. Chem. 277, 17415–17427 (2002).
Schopfer, F.J. et al. J. Biol. Chem. 280, 19289–19297 (2005).
Schopfer, F.J. et al. Proc. Natl. Acad. Sci. USA 102, 2340–2345 (2005).
Lundberg, J.O., Weitzberg, E., Lundberg, J.M. & Alving, K. Gut 35, 1543–1546 (1994).
Benjamin, N. et al. Nature 368, 502 (1994).
Millar, T.M. et al. FEBS Lett. 427, 225–228 (1998).
Li, H., Samouilov, A., Liu, X. & Zweier, J.L. J. Biol. Chem. 279, 16939–16946 (2004).
Huang, Z. et al. J. Clin. Invest. 115, 2099–2107 (2005).
Kozlov, A.V., Staniek, K. & Nohl, H. FEBS Lett. 454, 127–130 (1999).
Nagababu, E., Ramasamy, S., Abernethy, D.R. & Rifkind, J.M. J. Biol. Chem. (2003).
Doyle, M.P., Pickering, R.A., DeWeert, T.M., Hoekstra, J.W. & Pater, D. J. Biol. Chem. 256, 12393–12398 (1981).
Huang, K.T. et al. J. Biol. Chem. 280, 31126–31131 (2005).
Fernandez, B.O., Lorkovic, I.M. & Ford, P.C. Inorg. Chem. 42, 2–4 (2003).
Marti, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A. & Estrin, D.A. J. Phys. Chem. B 108, 18073–18080 (2004).
Tocheva, E.I., Rosell, F.I., Mauk, A.G. & Murphy, M.E.P. Science 304, 867–870 (2004).
Winterbourn, C.C. & Carrell, R.W. Biochem. J. 165, 141–148 (1977).
Balagopalakrishna, C. et al. Biochemistry 37, 13194–13202 (1998).
Kleinbongard, P. et al. Free Radic. Biol. Med. 35, 790–796 (2003).
Dejam, A. et al. Blood 106, 734–739 (2005).
Jensen, F.B. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 135, 9–24 (2003).
Lauer, T. et al. Proc. Natl. Acad. Sci. USA 98, 12814–12819 (2001).
Furchgott, R.F. & Bhadrakom, S. J. Pharmacol. Exp. Ther. 108, 129–143 (1953).
Gladwin, M.T. et al. Proc. Natl. Acad. Sci. USA 97, 11482–11487 (2000).
Cannon, R.O., III et al. J. Clin. Invest. 108, 279–287 (2001).
Crawford, J.H. et al. Blood published online 29 September 2005 (10.1182/blood-2005-07-2668).
Hunter, C.J. et al. Nat. Med. 10, 1122–1127 (2004).
Pluta, R.M., Dejam, A., Grimes, G., Gladwin, M.T. & Oldfield, E.H. J. Am. Med. Assoc. 293, 1477–1484 (2005).
Lundberg, J.O., Weitzberg, E., Cole, J.A. & Benjamin, N. Nat. Rev. Microbiol. 2, 593–602 (2004).
Tannenbaum, S.R., Weisman, M. & Fett, D. Food Cosmet. Toxicol. 14, 549–552 (1976).
Bjorne, H.H. et al. J. Clin. Invest. 113, 106–114 (2004).
Lundberg, J.O. & Govoni, M. Free Radic. Biol. Med. 37, 395–400 (2004).
Binkerd, E.F. & Kolari, O.E. Food Cosmet. Toxicol. 13, 655–661 (1975).
Hermann, L. Arch. Anat. Physiol. Lpz., 469–481 (1865).
Brunton, T.L. Lancet ii, 97 (1867).
Haldane, J. J. Hyg. (Lond.) 1, 115–122 (1901).
Mitchell, H.H., Shonle, H.A. & Grindley, H.S. J. Biol. Chem. 24, 461–490 (1916).
Banham, H.A., Haldane, J.S. & Savage, T. Br. Med. J., 187–189 (1925).
Brooks, J. Proc. R. Soc. Med. 123, 368–382 (1937).
Arnold, W.P., Mittal, C.K., Katsuki, S. & Murad, F. Proc. Natl. Acad. Sci. USA 74, 3203–3207 (1977).
Green, L.C. et al. Proc. Natl. Acad. Sci. USA 78, 7764–7768 (1981).
Green, L.C., Tannenbaum, S.R. & Goldman, P. Science 212, 56–58 (1981).
Feelisch, M. & Noack, E.A. Eur. J. Pharmacol. 139, 19–30 (1987).
Ignarro, L.J., Byrns, R.E. & Wood, K.S. in Vasodilation; Vascular Smooth Muscle, Peptides, Autonomic Nerves, and Endothelium (ed. Vanhoutte, P.M.) 427–435 (Raven, New York, 1988).
Furchgott, R.F. in Vasodilation; Vascular Smooth Muscle, Peptides, Autonomic Nerves, and Endothelium (ed. Vanhoutte, P.M.) 401–414 (Raven, New York, 1988).
Ignarro, L.J., Byrns, R.E., Buga, G.M. & Wood, K.S. Circ. Res. 61, 866–879 (1987).
Palmer, R.M., Ferrige, A.G. & Moncada, S. Nature 327, 524–526 (1987).
Hibbs, J.B., Jr., Taintor, R.R. & Vavrin, Z. Science 235, 473–476 (1987).
Garthwaite, J., Charles, S.L. & Chess-Williams, R. Nature 336, 385–388 (1988).
Marletta, M.A., Yoon, P.S., Iyengar, R., Leaf, C.D. & Wishnok, J.S. Biochemistry 27, 8706–8711 (1988).
Acknowledgements
We would like to thank other session chairs, including H. Franklin Bunn, A. Butler, M. Doyle, D. Lefer, G. Mauk, C.S. Raman and J.L. Zweier, for their valuable scientific and organizational contributions to this meeting. This meeting was generously funded by the Office of Rare Diseases, the National Heart, Lung, and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Neurological Disorders and Stroke and the Clinical Center of the National Institutes of Health. The meeting was also sponsored by the University of Pittsburgh School of Medicine, Wake Forest University, and the Medical College of Wisconsin. Additional information on speakers and presentations can be found at http://www.strategicresults.com/nitrite.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gladwin, M., Schechter, A., Kim-Shapiro, D. et al. The emerging biology of the nitrite anion. Nat Chem Biol 1, 308–314 (2005). https://doi.org/10.1038/nchembio1105-308
Issue Date:
DOI: https://doi.org/10.1038/nchembio1105-308
This article is cited by
-
White matter damage as a consequence of vascular dysfunction in a spontaneous mouse model of chronic mild chronic hypoperfusion with eNOS deficiency
Molecular Psychiatry (2022)
-
Novel gene similar to nitrite reductase (NO forming) plays potentially important role in the latency of tuberculosis
Scientific Reports (2021)
-
Rapid Response and High Selectivity for Reactive Nitrogen Species Based on Carbon Quantum Dots Fluorescent Probes
Food Analytical Methods (2021)
-
Effect of dietary nitrate supplementation on thermoregulatory and cardiovascular responses to submaximal cycling in the heat
European Journal of Applied Physiology (2018)
-
Low dose nitrite improves reoxygenation following renal ischemia in rats
Scientific Reports (2017)