Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Meeting Report
  • Published:

The emerging biology of the nitrite anion

A Corrigendum to this article was published on 01 February 2006

Nitrite has now been proposed to play an important physiological role in signaling, blood flow regulation and hypoxic nitric oxide homeostasis. A recent two-day symposium at the US National Institutes of Health highlighted recent advances in the understanding of nitrite biochemistry, physiology and therapeutics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nitrite chemistry, physiology and therapeutics.
Figure 2: Origin and interconversion of nitric oxide (NO) and nitrite (NO2) and their role in cell signaling and gene expression.
Figure 3: Nitrite reductase activity of hemoglobin.
Figure 4: The human nitrogen cycle.

References

  1. Rodriguez, J., Maloney, R.E., Rassaf, T., Bryan, N.S. & Feelisch, M. Proc. Natl. Acad. Sci. USA 100, 336–341 (2003).

    Article  CAS  Google Scholar 

  2. Cosby, K. et al. Nat. Med. 9, 1498–1505 (2003).

    Article  CAS  Google Scholar 

  3. Bryan, N.S. et al. Nat. Chem. Biol. 1, 290–297 (2005).

    Article  CAS  Google Scholar 

  4. Zweier, J.L., Wang, P., Samouilov, A. & Kuppusamy, P. Nat. Med. 1, 804–809 (1995).

    Article  CAS  Google Scholar 

  5. Webb, A. et al. Proc. Natl. Acad. Sci. USA 101, 13683–13688 (2004).

    Article  CAS  Google Scholar 

  6. Duranski, M.R. et al. J. Clin. Invest. 115, 1232–1240 (2005).

    Article  CAS  Google Scholar 

  7. Bryan, N.S. et al. Proc. Natl. Acad. Sci. USA 101, 4308–4313 (2004).

    Article  CAS  Google Scholar 

  8. Wink, D.A. Nat. Med. 9, 1460–1461 (2003).

    Article  CAS  Google Scholar 

  9. Eiserich, J.P. et al. Nature 391, 393–397 (1998).

    Article  CAS  Google Scholar 

  10. Brennan, M.L. et al. J. Biol. Chem. 277, 17415–17427 (2002).

    Article  CAS  Google Scholar 

  11. Schopfer, F.J. et al. J. Biol. Chem. 280, 19289–19297 (2005).

    Article  CAS  Google Scholar 

  12. Schopfer, F.J. et al. Proc. Natl. Acad. Sci. USA 102, 2340–2345 (2005).

    Article  CAS  Google Scholar 

  13. Lundberg, J.O., Weitzberg, E., Lundberg, J.M. & Alving, K. Gut 35, 1543–1546 (1994).

    Article  CAS  Google Scholar 

  14. Benjamin, N. et al. Nature 368, 502 (1994).

    Article  CAS  Google Scholar 

  15. Millar, T.M. et al. FEBS Lett. 427, 225–228 (1998).

    Article  CAS  Google Scholar 

  16. Li, H., Samouilov, A., Liu, X. & Zweier, J.L. J. Biol. Chem. 279, 16939–16946 (2004).

    Article  CAS  Google Scholar 

  17. Huang, Z. et al. J. Clin. Invest. 115, 2099–2107 (2005).

    Article  CAS  Google Scholar 

  18. Kozlov, A.V., Staniek, K. & Nohl, H. FEBS Lett. 454, 127–130 (1999).

    Article  CAS  Google Scholar 

  19. Nagababu, E., Ramasamy, S., Abernethy, D.R. & Rifkind, J.M. J. Biol. Chem. (2003).

  20. Doyle, M.P., Pickering, R.A., DeWeert, T.M., Hoekstra, J.W. & Pater, D. J. Biol. Chem. 256, 12393–12398 (1981).

    CAS  Google Scholar 

  21. Huang, K.T. et al. J. Biol. Chem. 280, 31126–31131 (2005).

    Article  CAS  Google Scholar 

  22. Fernandez, B.O., Lorkovic, I.M. & Ford, P.C. Inorg. Chem. 42, 2–4 (2003).

    Article  CAS  Google Scholar 

  23. Marti, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A. & Estrin, D.A. J. Phys. Chem. B 108, 18073–18080 (2004).

    Article  CAS  Google Scholar 

  24. Tocheva, E.I., Rosell, F.I., Mauk, A.G. & Murphy, M.E.P. Science 304, 867–870 (2004).

    Article  CAS  Google Scholar 

  25. Winterbourn, C.C. & Carrell, R.W. Biochem. J. 165, 141–148 (1977).

    Article  CAS  Google Scholar 

  26. Balagopalakrishna, C. et al. Biochemistry 37, 13194–13202 (1998).

    Article  CAS  Google Scholar 

  27. Kleinbongard, P. et al. Free Radic. Biol. Med. 35, 790–796 (2003).

    Article  CAS  Google Scholar 

  28. Dejam, A. et al. Blood 106, 734–739 (2005).

    Article  CAS  Google Scholar 

  29. Jensen, F.B. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 135, 9–24 (2003).

    Article  Google Scholar 

  30. Lauer, T. et al. Proc. Natl. Acad. Sci. USA 98, 12814–12819 (2001).

    Article  CAS  Google Scholar 

  31. Furchgott, R.F. & Bhadrakom, S. J. Pharmacol. Exp. Ther. 108, 129–143 (1953).

    CAS  Google Scholar 

  32. Gladwin, M.T. et al. Proc. Natl. Acad. Sci. USA 97, 11482–11487 (2000).

    Article  CAS  Google Scholar 

  33. Cannon, R.O., III et al. J. Clin. Invest. 108, 279–287 (2001).

    Article  CAS  Google Scholar 

  34. Crawford, J.H. et al. Blood published online 29 September 2005 (10.1182/blood-2005-07-2668).

  35. Hunter, C.J. et al. Nat. Med. 10, 1122–1127 (2004).

    Article  CAS  Google Scholar 

  36. Pluta, R.M., Dejam, A., Grimes, G., Gladwin, M.T. & Oldfield, E.H. J. Am. Med. Assoc. 293, 1477–1484 (2005).

    Article  CAS  Google Scholar 

  37. Lundberg, J.O., Weitzberg, E., Cole, J.A. & Benjamin, N. Nat. Rev. Microbiol. 2, 593–602 (2004).

    Article  CAS  Google Scholar 

  38. Tannenbaum, S.R., Weisman, M. & Fett, D. Food Cosmet. Toxicol. 14, 549–552 (1976).

    Article  CAS  Google Scholar 

  39. Bjorne, H.H. et al. J. Clin. Invest. 113, 106–114 (2004).

    Article  Google Scholar 

  40. Lundberg, J.O. & Govoni, M. Free Radic. Biol. Med. 37, 395–400 (2004).

    Article  CAS  Google Scholar 

  41. Binkerd, E.F. & Kolari, O.E. Food Cosmet. Toxicol. 13, 655–661 (1975).

    Article  CAS  Google Scholar 

  42. Hermann, L. Arch. Anat. Physiol. Lpz., 469–481 (1865).

  43. Brunton, T.L. Lancet ii, 97 (1867).

    Article  Google Scholar 

  44. Haldane, J. J. Hyg. (Lond.) 1, 115–122 (1901).

    Article  CAS  Google Scholar 

  45. Mitchell, H.H., Shonle, H.A. & Grindley, H.S. J. Biol. Chem. 24, 461–490 (1916).

    CAS  Google Scholar 

  46. Banham, H.A., Haldane, J.S. & Savage, T. Br. Med. J., 187–189 (1925).

  47. Brooks, J. Proc. R. Soc. Med. 123, 368–382 (1937).

    CAS  Google Scholar 

  48. Arnold, W.P., Mittal, C.K., Katsuki, S. & Murad, F. Proc. Natl. Acad. Sci. USA 74, 3203–3207 (1977).

    Article  CAS  Google Scholar 

  49. Green, L.C. et al. Proc. Natl. Acad. Sci. USA 78, 7764–7768 (1981).

    Article  CAS  Google Scholar 

  50. Green, L.C., Tannenbaum, S.R. & Goldman, P. Science 212, 56–58 (1981).

    Article  CAS  Google Scholar 

  51. Feelisch, M. & Noack, E.A. Eur. J. Pharmacol. 139, 19–30 (1987).

    Article  CAS  Google Scholar 

  52. Ignarro, L.J., Byrns, R.E. & Wood, K.S. in Vasodilation; Vascular Smooth Muscle, Peptides, Autonomic Nerves, and Endothelium (ed. Vanhoutte, P.M.) 427–435 (Raven, New York, 1988).

    Google Scholar 

  53. Furchgott, R.F. in Vasodilation; Vascular Smooth Muscle, Peptides, Autonomic Nerves, and Endothelium (ed. Vanhoutte, P.M.) 401–414 (Raven, New York, 1988).

    Google Scholar 

  54. Ignarro, L.J., Byrns, R.E., Buga, G.M. & Wood, K.S. Circ. Res. 61, 866–879 (1987).

    Article  CAS  Google Scholar 

  55. Palmer, R.M., Ferrige, A.G. & Moncada, S. Nature 327, 524–526 (1987).

    Article  CAS  Google Scholar 

  56. Hibbs, J.B., Jr., Taintor, R.R. & Vavrin, Z. Science 235, 473–476 (1987).

    Article  CAS  Google Scholar 

  57. Garthwaite, J., Charles, S.L. & Chess-Williams, R. Nature 336, 385–388 (1988).

    Article  CAS  Google Scholar 

  58. Marletta, M.A., Yoon, P.S., Iyengar, R., Leaf, C.D. & Wishnok, J.S. Biochemistry 27, 8706–8711 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank other session chairs, including H. Franklin Bunn, A. Butler, M. Doyle, D. Lefer, G. Mauk, C.S. Raman and J.L. Zweier, for their valuable scientific and organizational contributions to this meeting. This meeting was generously funded by the Office of Rare Diseases, the National Heart, Lung, and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Neurological Disorders and Stroke and the Clinical Center of the National Institutes of Health. The meeting was also sponsored by the University of Pittsburgh School of Medicine, Wake Forest University, and the Medical College of Wisconsin. Additional information on speakers and presentations can be found at http://www.strategicresults.com/nitrite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T Gladwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladwin, M., Schechter, A., Kim-Shapiro, D. et al. The emerging biology of the nitrite anion. Nat Chem Biol 1, 308–314 (2005). https://doi.org/10.1038/nchembio1105-308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio1105-308

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing