Finding better protein engineering strategies

Article metrics

Protein improvement strategies today involve widely varying combinations of rational design with random mutagenesis and screening. To make further progress—defined as making subsequent protein engineering problems easier to solve—protein engineers must critically compare these strategies and eliminate less effective ones.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Protein engineering methods differ widely based on the degree that the enzyme is changed and the amount of information available for rational design.

References

  1. 1

    Lutz, S. & Bornscheuer, U.T. (eds.). Protein Engineering Handbook (Wiley-VCH, Weinheim, 2009).

  2. 2

    Estell, D.A., Graycar, T.P. & Wells, J.A. J. Biol. Chem. 260, 6518–6521 (1985).

  3. 3

    Fox, R.J. et al. Nat. Biotechnol. 25, 338–344 (2007).

  4. 4

    Gray, K.A., Zhao, L. & Emptage, M. Curr. Opin. Chem. Biol. 10, 141–146 (2006).

  5. 5

    McCarthy, A. Chem. Biol. 10, 893–894 (2003).

  6. 6

    Eschenmoser, A. & Wintner, C.E. Science 196, 1410–1420 (1977).

  7. 7

    Woodward, R.B. Pure Appl. Chem. 33, 145–177 (1973).

  8. 8

    Chen-Goodspeed, M., Sogorb, M.A., Wu, F. & Raushel, F.M. Biochemistry 40, 1332–1339 (2001).

  9. 9

    Seelig, B. & Szostak, J.W. Nature 448, 828–831 (2007).

  10. 10

    Qian, Z. & Lutz, S. J. Am. Chem. Soc. 127, 13466–13467 (2005).

  11. 11

    Morley, K.L. & Kazlauskas, R.J. Trends Biotechnol. 23, 231–237 (2005).

  12. 12

    Neylon, C. Nucleic Acids Res. 32, 1448–1459 (2004).

  13. 13

    Carr, R. et al. ChemBioChem 6, 637–639 (2005).

  14. 14

    DeSantis, G. et al. J. Am. Chem. Soc. 125, 11476–11477 (2003).

  15. 15

    Bloom, J.D., Labthavikul, S.T., Otey, C.R. & Arnold, F.H. Proc. Natl. Acad. Sci. USA 103, 5869–5874 (2006).

  16. 16

    Weinreich, D.M., Delaney, N.F., DePristo, M.A. & Hartl, D.L. Science 312, 111–114 (2006).

  17. 17

    Reetz, M.T. & Sanchis, J. ChemBioChem 9, 2260–2267 (2008).

  18. 18

    Whittle, E. & Shanklin, J. J. Biol. Chem. 276, 21500–21505 (2001).

  19. 19

    Reetz, M.T., Wang, L.W. & Bocola, M. Angew. Chem. Int. Ed. 45, 1236–1241 (2006).

  20. 20

    Reetz, M.T., Kahakeaw, D. & Lohmer, R. ChemBioChem 9, 1797–1804 (2008).

  21. 21

    Bloom, J.D., Romero, P.A., Lu, Z. & Arnold, F.H. Biol. Direct 2, 17 (2007).

  22. 22

    Gupta, R.D. & Tawfik, D.S. Nat. Methods 5, 939–942 (2008).

  23. 23

    Stemmer, W.P. Nature 370, 389–391 (1994).

Download references

Acknowledgements

U.T.B. thanks the German Research Foundation (DFG, Grant Bo1862/4-1) and R.J.K. the US National Science Foundation (CHE-0616560) for financial support.

Author information

Correspondence to Romas J Kazlauskas or Uwe T Bornscheuer.

Rights and permissions

Reprints and Permissions

About this article

Further reading