Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Making carbon-nitrogen bonds in biological and chemical synthesis

The function of many biologically active molecules requires the presence of carbon-nitrogen bonds in strategic positions. The biosynthetic pathways leading to such bonds can be bypassed through chemical synthesis to synthesize natural products more efficiently and also to generate the molecular diversity unavailable in nature.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nitrogen-containing fragments are key to biological activity.
Figure 2
Figure 3: Oxygen transfer: monooxygenase versus synthetic catalysts.

Accession codes


Protein Data Bank


  1. Paterson, I. & Anderson, E.A. Science 310, 451–453 (2005).

    Article  Google Scholar 

  2. Newman, D.J., Cragg, G.M. & Snader, K.M. J. Nat. Prod. 66, 1022–1037 (2003).

    Article  CAS  Google Scholar 

  3. Kingston, D.G.I. & Newman, D.J. Curr. Opin. Drug. Disc. Dev. 5, 304–316 (2002).

    Google Scholar 

  4. Burke, M.D., Berger, E.M. & Schreiber, S.L. Science 302, 613–618 (2003).

    Article  CAS  Google Scholar 

  5. Henkel, T., Brunne, R.M., Muller, H. & Reichel, F. Angew. Chem. Int. Edn. Engl. 38, 643–647 (1999).

    Article  CAS  Google Scholar 

  6. Fuerst, S., Hosztafi, S. & Friedmann, T. Curr. Med. Chem. 1, 423–440 (1995).

    CAS  Google Scholar 

  7. Zheng, S. et al. J. Chem. Inf. Model. 45, 856–862 (2005).

    Article  CAS  Google Scholar 

  8. Sharpless, K.B. Angew. Chem. Int. Edn. Engl. 41, 2024–2032 (2002).

    Article  CAS  Google Scholar 

  9. Breslow, R., Nemo, T.E. & Myers, R.S. J. Am. Chem. Soc. 101, 1032–1033 (1979).

    Article  Google Scholar 

  10. Jacobsen, E.N., Zhang, W., Muci, A.R., Ecker, J.R. & Deng, L. J. Am. Chem. Soc. 113, 7063–7064 (1991).

    Article  CAS  Google Scholar 

  11. Grue-Sorensen, G. & Spenser, I.D. J. Am. Chem. Soc. 105, 7401–7404 (1983).

    Article  CAS  Google Scholar 

  12. Hinman, A. & Du Bois, J. J. Am. Chem. Soc. 125, 11510–11511 (2003).

    Article  CAS  Google Scholar 

  13. Nicolaou, K.C. et al. J. Am. Chem. Soc. 122, 9968–9976 (2000).

    Article  CAS  Google Scholar 

  14. Walsh, C.T. Science 303, 1805–1810 (2004).

    Article  CAS  Google Scholar 

  15. Merkx, M. et al. Angew. Chem. Int. Edn. Engl. 40, 2782–2807 (2001).

    Article  CAS  Google Scholar 

  16. Reetz, M.T., Bocola, M., Carballeira, J.D., Zha, D. & Vogel, A. Angew. Chem. Int. Edn. Engl. 44, 4192–4196 (2005).

    Article  CAS  Google Scholar 

  17. Williams, P.A. et al. Science 305, 683–686 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hili, R., Yudin, A. Making carbon-nitrogen bonds in biological and chemical synthesis. Nat Chem Biol 2, 284–287 (2006).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing