ADDENDUM

Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury

Alexei Degterev, Zhihong Huang, Michael Boyce, Yaqiao Li, Prakash Jagtap, Noboru Mizushima, Gregory D Cuny, Timothy J Mitchison, Michael A Moskowitz & Junying Yuan

Nat. Chem. Biol. 1, 112-119 (2005); published online 29 May 2005; corrected after print 31 January 2013

In this Article¹, we described a small-molecule inhibitor of necroptosis, termed Necrostatin-1 (Nec-1). Since the original publication, additional data regarding the properties of Nec-1 have been reported, including off-target activity and metabolic stability in mice, that are important in designing *in vitro* and, especially, *in vivo* experiments with Nec-1.

Teng *et al.*² reported an optimized derivative of Nec-1, termed 7-Cl-O-Nec-1 (**66** in ref. 2), that was used in ref. 1 to demonstrate the protection in an ischemic brain injury model. This molecule showed higher activity in inhibiting necroptosis in Jurkat cells than Nec-1 ($EC_{50} = 210$ nM versus $EC_{50} = 490$ nM), no nonspecific cytotoxicity at high concentrations (~100 μ M) and reasonable pharmacokinetic characteristics following intravenous administration in mice. Degterev *et al.*³ subsequently reported that Nec-1 shows limited metabolic stability, which is substantially improved with 7-Cl-O-Nec-1. Takahashi *et al.*⁴ also reported that Nec-1 showed paradoxical toxicity at lower, but not higher, doses in a mouse model of systemic inflammatory stress syndrome (SIRS). No such toxicity was observed with 7-Cl-O-Nec-1. Thus, for in-cell and *in vivo* experiments, we recommend the use of 7-Cl-O-Nec-1.

Muller et al.⁵ reported that Nec-1, also known by its chemical name of methylthiohydantoin-tryptophan, is a micromolar inhibitor of indolamine 2,3-deoxygenase (IDO) with $EC_{50} = 11.4 \,\mu\text{M}$ in a cell-based assay. Thus, given the ~20-fold higher activity of Nec-1 in a necroptotic assay, the use of lower concentrations of this molecule could be helpful in distinguishing between inhibition of necroptosis and IDO-related processes. Another known inhibitor of IDO, 1-methyl-DL-tryptophan, lacks activity against necroptosis as reported by both Degterev et al.³ and Takahashi et al.⁴ Notably, both reports show that optimized 7-Cl-O-Nec-1 lacks activity against IDO. Overall, potential nonspecific toxicity, inhibition of IDO and limited stability of Nec-1 should be taken into account when the molecule is used *in vivo*, whereas 7-Cl-O-Nec-1 lacks these liabilities and thus represents a superior choice for *in vivo* studies.

References

- 1. Degterev et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).
- 2. Teng et al. Structure-activity relationship study of novel necroptosis inhibitors. Bioorg. Med. Chem. Lett. 15, 5039-5044 (2005).
- 3. Degterev, A., Maki, J.L. & Yuan, J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ. 20, 366 (2012)
- 4. Takahashi, N. et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 3, e437 (2012)
- Muller et al. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. 11, 312–319 (2005).

CORRIGENDUM

Conformational stabilization of ubiquitin yields potent and selective inhibitors of USP7

Yingnan Zhang, Lijuan Zhou, Lionel Rouge, Aaron H Phillips, Cynthia Lam, Peter Liu, Wendy Sandoval, Elizabeth Helgason, Jeremy M Murray, Ingrid E Wertz & Jacob E Corn

Nat. Chem. Biol. 9, 51-58 (2013); published online 25 November 2012; corrected after print 29 January 2013

In the version of this article initially published, the authors neglected to acknowledge an important collaborator and to include a citation of their related work. The error has been corrected in the HTML and PDF versions of the article.