Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Visualizing biochemical activities in living cells

Autofluorescent proteins have become indispensable in our quest to visualize molecular events in living cells. Further progress in the visualization and quantification of all biochemical activities of the cell will require the introduction of additional and complementary methods for sensing and probing biomolecules. Here I highlight some of the areas where the development of new probes and labeling methods is eagerly awaited and where chemical biologists could make important contributions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFP-based voltage sensor “Mermaid.”
Figure 2: GPCR oligomerization analysis at the cell surface of living cells using SNAP-tag and time-resolved FRET.

References

  1. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Science 263, 802–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Taylor, D.L. & Wang, Y.L. Proc. Natl. Acad. Sci. USA 75, 857–861 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  4. Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S. & Tsien, R.Y. Nature 349, 694–697 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. Nat. Methods 2, 905–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. Science 312, 217–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Pakhomov, A.A. & Martynov, V.I. Chem. Biol. 15, 755–764 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Tsutsui, H., Karasawa, S., Okamura, Y. & Miyawaki, A. Nat. Methods 5, 683–685 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Sakaue-Sawano, A. et al. Cell 132, 487–498 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Gronemeyer, T., Godin, G. & Johnsson, K. Curr. Opin. Biotechnol. 16, 453–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Martin, B.R., Giepmans, B.N., Adams, S.R. & Tsien, R.Y. Nat. Biotechnol. 23, 1308–1314 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Hoffmann, C. et al. Nat. Methods 2, 171–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Keppler, A. et al. Nat. Biotechnol. 21, 86–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Maurel, D. et al. Nat. Methods 5, 561–567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, B., Jones, S.A., Brandenburg, B. & Zhuang, X. Nat. Methods 5, 1047–1052 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Ai, H.W., Hazelwood, K.L., Davidson, M.W. & Campbell, R.E. Nat. Methods 5, 401–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Stauffer, T.P., Ahn, S. & Meyer, T. Curr. Biol. 8, 343–346 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Varnai, P. & Balla, T. J. Cell Biol. 143, 501–510 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bertrand, E. et al. Mol. Cell 2, 437–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Prescher, J.A. & Bertozzi, C.R. Nat. Chem. Biol. 1, 13–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Baskin, J.M. et al. Proc. Natl. Acad. Sci. USA 104, 16793–16797 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laughlin, S.T., Baskin, J.M., Amacher, S.L. & Bertozzi, C.R. Science 320, 664–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ning, X., Guo, J., Wolfert, M.A. & Boons, G.J. Angew. Chem. Int. Edn Engl. 47, 2253–2255 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

K.J. is a cofounder of Covalys Biosciences, which exploits SNAP-tag for applications in protein labeling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnsson, K. Visualizing biochemical activities in living cells. Nat Chem Biol 5, 63–65 (2009). https://doi.org/10.1038/nchembio0209-63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio0209-63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing