Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53

Abstract

The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small-molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a genome-wide short hairpin RNA screen for genes that are lethal in combination with p53 activation by Nutlin-3, which showed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors also enable Nutlin-3 to kill tumor spheroids. These results identify new pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic screen for identifying modulators of the cellular response to p53 activation by Nutlin-3.
Figure 2: Identification of synthetic lethal with nutlin-3 genes.
Figure 3: Pathway analysis points to ATM and MET as modulators of p53-dependent cell fate choice.
Figure 4: ATM protects cells from p53-dependent apoptosis upon Nutlin-3 treatment.
Figure 5: MET protects against p53-dependent apoptosis upon Nutlin-3 treatment.
Figure 6: ATM and MET do not affect the ability of p53 to transactivate key genes in the cell cycle arrest and apoptosis modules.
Figure 7: 53BP1 is not required for ATM synthetic lethality.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Vousden, K.H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, C.J., Lain, S., Verma, C.S., Fersht, A.R. & Lane, D.P. Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 9, 862–873 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Levesque, A.A. & Eastman, A. p53-based cancer therapies: is defective p53 the Achilles heel of the tumor? Carcinogenesis 28, 13–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Mandinova, A. & Lee, S.W. The p53 pathway as a target in cancer therapeutics: obstacles and promise. Sci. Transl. Med. 3, 64rv1 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Tovar, C. et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc. Natl. Acad. Sci. USA 103, 1888–1893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang, B., Deo, D., Xia, M. & Vassilev, L.T. Pharmacologic p53 activation blocks cell cycle progression but fails to induce senescence in epithelial cancer cells. Mol. Cancer Res. 7, 1497–1509 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. París, R., Henry, R.E., Stephens, S.J., McBryde, M. & Espinosa, J.M. Multiple p53-independent gene silencing mechanisms define the cellular response to p53 activation. Cell Cycle 7, 2427–2433 (2008).

    Article  PubMed  Google Scholar 

  9. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. el-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Hermeking, H. et al. 14–3-3σ is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1, 3–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Yu, J., Zhang, L., Hwang, P.M., Kinzler, K.W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Nakano, K. & Vousden, K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, G.S. et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat. Genet. 17, 141–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Müller, M. et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188, 2033–2045 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vousden, K.H. & Lu, X. Live or let die: the cell's response to p53. Nat. Rev. Cancer 2, 594–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Sullivan, K.D., Gallant-Behm, C.L., Henry, R.E., Fraikin, J.L. & Espinosa, J.M. The p53 circuit board. Biochim. Biophys. Acta 1825, 229–244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263–269 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, J. & Tan, A.C. BiNGS!SL-seq: a bioinformatics pipeline for the analysis and interpretation of deep sequencing genome-wide synthetic lethal screen. Methods Mol. Biol. 802, 389–398 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Porter, C.C. et al. Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia. Leukemia published online; doi:10.1038/leu.2011.392 (13 January 2012).

    Article  CAS  PubMed  Google Scholar 

  22. Di Renzo, M.F. et al. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin. Cancer Res. 1, 147–154 (1995).

    CAS  PubMed  Google Scholar 

  23. Takhar, A.S., Eremin, O. & Watson, S.A. The role of gastrin in colorectal carcinogenesis. Surgeon 2, 251–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Li, A., Varney, M.L. & Singh, R.K. Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials. Clin. Cancer Res. 7, 3298–3304 (2001).

    CAS  PubMed  Google Scholar 

  25. Sugai, T. et al. Frequent allelic imbalance at the ATM locus in DNA multiploid colorectal carcinomas. Oncogene 20, 6095–6101 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Friedrich, J., Seidel, C., Ebner, R. & Kunz-Schughart, L.A. Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4, 309–324 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Olivero, M. et al. Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br. J. Cancer 74, 1862–1868 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamazaki, S. et al. Pharmacokinetic-pharmacodynamic modeling of biomarker response and tumor growth inhibition to an orally available cMet kinase inhibitor in human tumor xenograft mouse models. Drug Metab. Dispos. 36, 1267–1274 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Shaw, A.T. & Solomon, B. Targeting anaplastic lymphoma kinase in lung cancer. Clin. Cancer Res. 17, 2081–2086 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Sattler, M. et al. A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res. 63, 5462–5469 (2003).

    CAS  PubMed  Google Scholar 

  33. Hwang, C.I. et al. Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc. Natl. Acad. Sci. USA 108, 14240–14245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, Y., Xing, D. & Liu, L. PUMA promotes Bax translocation by both directly interacting with Bax and by competitive binding to Bcl-X L during UV-induced apoptosis. Mol. Biol. Cell 20, 3077–3087 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chan, T.A., Hwang, P.M., Hermeking, H., Kinzler, K.W. & Vogelstein, B. Cooperative effects of genes controlling the G(2)/M checkpoint. Genes Dev. 14, 1584–1588 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Henry, R.E., Andrysik, Z., Paris, R., Galbraith, M.D. & Espinosa, J.M.A. DR4:tBID axis drives the p53 apoptotic response by promoting oligomerization of poised BAX. EMBO J. 31, 1266–1278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang, H. et al. The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev. 23, 1895–1909 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brummelkamp, T.R. et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat. Chem. Biol. 2, 202–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Biton, S. & Ashkenazi, A. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell 145, 92–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Guo, Z., Kozlov, S., Lavin, M.F., Person, M.D. & Paull, T.T. ATM activation by oxidative stress. Science 330, 517–521 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Hadian, K. & Krappmann, D. Signals from the nucleus: activation of NF-κB by cytosolic ATM in the DNA damage response. Sci. Signal. 4, pe2 (2011).

    Article  PubMed  Google Scholar 

  42. Bykov, V.J. et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat. Med. 8, 282–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat. Med. 10, 1321–1328 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Lavin, M.F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Miyamoto, S. Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Res. 21, 116–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Ding, J., Miao, Z.H., Meng, L.H. & Geng, M.Y. Emerging cancer therapeutic opportunities target DNA-repair systems. Trends Pharmacol. Sci. 27, 338–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Trusolino, L., Bertotti, A. & Comoglio, P.M. MET signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol. 11, 834–848 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Kwak, E.L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant RO1 CA117907, a Lung SPORE Pilot Grant (P50 CA058187), a pilot grant from the Cancer League of Colorado and a Career Development Award from The Leukemia and Lymphoma Society to K.D.S. J.M.E. is a Howard Hughes Medical Institute Early Career Scientist. We thank members of the Espinosa lab for support and discussions and H. Kennedy and J. Kruk for inspiration.

Author information

Authors and Affiliations

Authors

Contributions

K.D.S. conducted most experiments, interpreted all data and wrote the paper. N.P.-J. did cell culture, western blots and cell viability assays. R.E.H. carried out the microarray experiment. C.C.P. and J.D. shared unpublished protocols for synthetic lethal screens in human cells. J.K. and A.C.T. developed BiNGS and did most bioinformatics analyses. J.J.T. and S.G.E. conducted MCTS experiments and analyzed CI data. J.M.E. participated in project design, established the collaborations and co-wrote the paper.

Corresponding author

Correspondence to Joaquín M Espinosa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 5250 kb)

Supplementary Data Set 1

HCT116 screen data (XLSX 1642 kb)

Supplementary Data Set 2

Raw sequence counts from HCT116 screen (XLSX 2403 kb)

Supplementary Data Set 3

A549 screen data (XLSX 1204 kb)

Supplementary Data Set 4

Raw sequence counts from A549 screen (XLSX 3443 kb)

Supplementary Data Set 5

shRNA sequences used in this study (XLSX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, K., Padilla-Just, N., Henry, R. et al. ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53. Nat Chem Biol 8, 646–654 (2012). https://doi.org/10.1038/nchembio.965

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.965

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer