Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase

Abstract

Anapleurosis is the filling of the tricarboxylic acid cycle with four-carbon units. The common substrate for both anapleurosis and glucose phosphorylation in bacteria is the terminal glycolytic metabolite phosphoenolpyruvate (PEP). Here we show that Escherichia coli quickly and almost completely turns off PEP consumption upon glucose removal. The resulting buildup of PEP is used to quickly import glucose if it becomes available again. The switch-like termination of anapleurosis results from depletion of fructose-1,6-bisphosphate (FBP), an ultrasensitive allosteric activator of PEP carboxylase. E. coli expressing an FBP-insensitive point mutant of PEP carboxylase grow normally when glucose is steadily available. However, they fail to build up PEP upon glucose removal, grow poorly when glucose availability oscillates and suffer from futile cycling at the PEP node on gluconeogenic substrates. Thus, bacterial central carbon metabolism is intrinsically programmed with ultrasensitive allosteric regulation to enable rapid adaptation to changing environmental conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glucose removal results in PEP buildup.
Figure 2: PEP carboxylase is inhibited by 99% upon glucose removal.
Figure 3: Activation of PEP carboxylase by FBP is enhanced by physiological concentrations of acetyl-CoA and aspartate.
Figure 4: PEP accumulation upon glucose removal enables rapid import of glucose when it reappears.
Figure 5: The FBP-insensitive variant of PEP carboxylase causes futile cycling on gluconeogenic medium.

Similar content being viewed by others

References

  1. Kotte, O., Zaugg, J.B. & Heinemann, M. Bacterial adaptation through distributed sensing of metabolic fluxes. Mol. Syst. Biol. 6, 355 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Christofk, H.R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Sauer, U. & Eikmanns, B.J. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol. Rev. 29, 765–794 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Feist, A.M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Siddiquee, K.A., Arauzo-Bravo, M.J. & Shimizu, K. Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli. FEMS Microbiol. Lett. 235, 25–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Ishii, N. et al. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316, 593–597 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Brauer, M.J. et al. Conservation of the metabolomic response to starvation across two divergent microbes. Proc. Natl. Acad. Sci. USA 103, 19302–19307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rabinowitz, J.D. & Kimball, E. Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal. Chem. 79, 6167–6173 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Fischer, E. & Sauer, U. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J. Biol. Chem. 278, 46446–46451 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Salleh, H.M., Patel, M.A. & Woodard, R.W. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis. Biochemistry 35, 8942–8947 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, D.H. et al. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35, 4923–4928 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Al Zaid Siddiquee, K., Arauzo-Bravo, M.J. & Shimizu, K. Metabolic flux analysis of pykF gene knockout Escherichia coli based on C-13-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl. Microbiol. Biotechnol. 63, 407–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Haverkorn van Rijsewijk, B.R., Nanchen, A., Nallet, S., Kleijn, R.J. & Sauer, U. Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol. Syst. Biol. 7, 477 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Peng, L. & Shimizu, K. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl. Microbiol. Biotechnol. 61, 163–178 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Herrmann, K.M. The Shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol. 107, 7–12 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanwal, B.D. & Maeba, P. Regulation of activity of phosphoenolypyruvate carboxylase by fructose diphosphate. Biochem. Biophys. Res. Commun. 22, 194–199 (1966).

    Article  CAS  PubMed  Google Scholar 

  18. Izui, K., Matsumura, H., Furumoto, T. & Kai, Y. Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu. Rev. Plant Biol. 55, 69–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Morikawa, M., Izui, K., Taguchi, M. & Katsuki, H. Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. 1. Estimation of the activities in the cells grown on various compounds. J. Biochem. 87, 441–449 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Izui, K., Taguchi, M., Morikawa, M. & Katsuki, H. Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. 2. Kinetic studies with a reaction system containing physiological concentrations of ligands. J. Biochem. 90, 1321–1331 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Yuan, J. & Rabinowitz, J.D. Differentiating metabolites formed from de novo synthesis versus macromolecule decomposition. J. Am. Chem. Soc. 129, 9294–9295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kodaki, T., Fujita, N., Kameshita, I., Izui, K. & Katsuki, H. Phosphoenolpyruvate carboxylase of Escherichia coli—specificity of some compounds as activators at the site for fructose-1,6-bisphosphate, one of the allosteric effectors. J. Biochem. 95, 637–642 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Garnak, M. & Reeves, H.C. Phosphorylation of isocitrate dehydrogenase of Escherichia coli. Science 203, 1111–1112 (1979).

    Article  CAS  PubMed  Google Scholar 

  24. Wohl, R.C. & Markus, G. Phosphoenolpyruvate carboxylase of Escherichia coli—purification and some properties. J. Biol. Chem. 247, 5785–5792 (1972).

    CAS  PubMed  Google Scholar 

  25. Silverstein, R. & Willis, M.S. Concerted regulation in vitro of phosphoenolpyruvate carboxylase from Escherichia coli. J. Biol. Chem. 248, 8402–8407 (1973).

    CAS  PubMed  Google Scholar 

  26. Takahashi-Terada, A. et al. Maize phosphoenolpyruvate carboxylase—mutations at the putative binding site for glucose 6-phosphate caused desensitization and abolished responsiveness to regulatory phosphorylation. J. Biol. Chem. 280, 11798–11806 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Oh, M.K., Rohlin, L., Kao, K.C. & Liao, J.C. Global expression profiling of acetate-grown Escherichia coli. J. Biol. Chem. 277, 13175–13183 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Bennett, B.D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao, J., Baba, T., Mori, H. & Shimizu, K. Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate. Metab. Eng. 6, 164–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Schaub, J. & Reuss, M. In vivo dynamics of glycolysis in Escherichia coli shows need for growth-rate dependent metabolome analysis. Biotechnol. Prog. 24, 1402–1407 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Theobald, U., Mailinger, W., Baltes, M., Rizzi, M. & Reuss, M. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. 1. Experimental observations. Biotechnol. Bioeng. 55, 305–316 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, T., Bailey, M.F., Angley, L.M., Cooper, T.F. & Dobson, R.C.J. The quaternary structure of pyruvate kinase type 1 from Escherichia coli at low nanomolar concentrations. Biochimie 92, 116–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Ogawa, T., Mori, H., Tomita, M. & Yoshino, M. Inhibitory effect of phosphoenolpyruvate on glycolytic enzymes in Escherichia coli. Res. Microbiol. 158, 159–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Kern, D. & Zuiderweg, E.R. The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 13, 748–757 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Walsh, K. & Koshland, D.E. Branch point control by the phosphorylation state of isocitrate dehydrogenase—a quantitative examination of fluxes during a regulatory transition. J. Biol. Chem. 260, 8430–8437 (1985).

    CAS  PubMed  Google Scholar 

  36. Stadtman, E.R. The story of glutamine synthetase regulation. J. Biol. Chem. 276, 44357–44364 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Kai, Y., Matsumura, H. & Izui, K. Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch. Biochem. Biophys. 414, 170–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez, C.F. et al. Molecular basis of formaldehyde detoxification characterization of two S-formylglutathione hydrolases from Escherichia coli, Frmb and Yeig. J. Biol. Chem. 281, 14514–14522 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Brown, G. et al. Structural and biochemical characterization of the type II fructose-1,6-bisphosphatase GlpX from Escherichia coli. J. Biol. Chem. 284, 3784–3792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, M., Chan, C.W., Guss, J.M., Christopherson, R.I. & Maher, M.J. Dihydroorotase from Escherichia coli: loop movement and cooperativity between subunits. J. Mol. Biol. 348, 523–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Song, W.J. & Jackowski, S. Kinetics and regulation of pantothenate kinase from Escherichia coli. J. Biol. Chem. 269, 27051–27058 (1994).

    CAS  PubMed  Google Scholar 

  42. Bhasin, M., Billinsky, J.L. & Palmer, D.R.J. Steady-state kinetics and molecular evolution of Escherichia coli MenD [(1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase], an anomalous thiamin diphosphate-dependent decarboxylase-carboligase. Biochemistry 42, 13496–13504 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Broglie, K.E. & Takahashi, M. Fluorescence studies of threonine-promoted conformational transitions in aspartokinase I using the substrate analogue 2′(3′)-O-(2,4,6-trinitrophenyl)adenosine 5′-triphosphate. J. Biol. Chem. 258, 12940–12946 (1983).

    CAS  PubMed  Google Scholar 

  44. Eisenstein, E., Yu, H.D. & Schwarz, F.P. Cooperative binding of the feedback modifiers isoleucine and valine to biosynthetic threonine deaminase from Escherichia coli. J. Biol. Chem. 269, 29423–29429 (1994).

    CAS  PubMed  Google Scholar 

  45. Yuan, J., Bennett, B.D. & Rabinowitz, J.D. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat. Protoc. 3, 1328–1340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gutnick, D., Calvo, J.M., Klopotow, T. & Ames, B.N. Compounds which serve as sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J. Bacteriol. 100, 215–219 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu, W., Bennett, B.D. & Rabinowitz, J.D. Analytical strategies for LC-MS-based targeted metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871, 236–242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, W. et al. Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Anal. Chem. 82, 3212–3221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kitagawa, M. et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete Set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 12, 291–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Princeton University colleagues C. Doucette for the ppc deletion strain and A. Hottes for the pCA24N-ppc plasmid; J. Park for the flux calculations; A. Michaelis and Z. Gitai for the microscopy; D. Perlman, W. Lu, K. Saw and H. Shwe for protein mass spectrometry; and N. Wingreen for helpful discussions. This research was funded by US National Science Foundation (NSF) CAREER award MCB-0643859, Joint US Department of Energy–Air Force Office of Scientific Research award DOE DE-SC0002077–AFOSR FA9550-09-1-0580, the US National Institutes of Health Center for Quantitative Biology award P50 GM071508 and NSF grant CBET-0941143. M.L.R. was supported by NSF Graduate Research Fellowship DGE-0646086.

Author information

Authors and Affiliations

Authors

Contributions

Y.-F.X. and J.D.R. designed experiments, analyzed data and wrote the paper. D.A.-N. and M.L.R. performed preliminary experiments and contributed to discussion. X.-J.F. contributed to modeling.

Corresponding author

Correspondence to Joshua D Rabinowitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 6895 kb)

Supplementary Data Set 1

Carbon starvation (XLSX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, YF., Amador-Noguez, D., Reaves, M. et al. Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. Nat Chem Biol 8, 562–568 (2012). https://doi.org/10.1038/nchembio.941

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing