Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthetic oligonucleotides recruit ILF2/3 to RNA transcripts to modulate splicing

Abstract

We describe a new technology for recruiting specific proteins to RNA through selective recognition of heteroduplexes formed with chemically modified antisense oligonucleotides (ASOs). Typically, ASOs function by hybridizing to their RNA targets and blocking the binding of single-stranded RNA–binding proteins. Unexpectedly, we found that ASOs with 2′-deoxy-2′-fluoro (2′-F) nucleotides, but not with other 2′ chemical modifications, have an additional property: they form heteroduplexes with RNA that are specifically recognized by the interleukin enhancer-binding factor 2 and 3 complex (ILF2/3). 2′-F ASO–directed recruitment of ILF2/3 to RNA can be harnessed to control gene expression by modulating alternative splicing of target transcripts. ILF2/3 recruitment to precursor mRNA near an exon results in omission of the exon from the mature mRNA, both in cell culture and in mice. We discuss the possibility of using chemically engineered ASOs that recruit specific proteins to modulate gene expression for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of splicing in cell culture as a function of ASO chemistry.
Figure 2: Identification of proteins that are recruited to a 2′-F ASO–RNA duplex.
Figure 3: 2′-F ASO–directed exon skipping is mediated by ILF2/3.
Figure 4: Structural determinants for ILF2/3 binding to ASO–RNA duplexes.
Figure 5: Effect of 2′-F mixmer ASOs on exon skipping.
Figure 6: Modulation of splicing in mice as a function of ASO chemistry.
Figure 7: Scheme showing the proposed mechanism for ASO chemistry–dependent modulation of SMN2 exon 7 alternative splicing.

Similar content being viewed by others

References

  1. Glisovic, T., Bachorik, J.L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977–1986 (2008).

    Article  CAS  Google Scholar 

  2. Licatalosi, D.D. & Darnell, R.B. RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet. 11, 75–87 (2010).

    Article  CAS  Google Scholar 

  3. Calarco, J.A., Zhen, M. & Blencowe, B.J. Networking in a global world: establishing functional connections between neural splicing regulators and their target transcripts. RNA 17, 775–791 (2011).

    Article  CAS  Google Scholar 

  4. Cooper, T.A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).

    Article  CAS  Google Scholar 

  5. Lunde, B.M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    Article  CAS  Google Scholar 

  6. Auweter, S.D., Oberstrass, F.C. & Allain, F.H. Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res. 34, 4943–4959 (2006).

    Article  CAS  Google Scholar 

  7. Tian, B., Bevilacqua, P.C., Diegelman-Parente, A. & Mathews, M.B. The double-stranded-RNA-binding motif: interference and much more. Nat. Rev. Mol. Cell Biol. 5, 1013–1023 (2004).

    Article  CAS  Google Scholar 

  8. Wahl, M.C., Will, C.L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  Google Scholar 

  9. Wang, Y., Cheong, C.G., Hall, T.M. & Wang, Z. Engineering splicing factors with designed specificities. Nat. Methods 6, 825–830 (2009).

    Article  CAS  Google Scholar 

  10. Mackay, J.P., Font, J. & Segal, D.J. The prospects for designer single-stranded RNA-binding proteins. Nat. Struct. Mol. Biol. 18, 256–261 (2011).

    Article  CAS  Google Scholar 

  11. Culler, S.J., Hoff, K.G. & Smolke, C.D. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330, 1251–1255 (2010).

    Article  CAS  Google Scholar 

  12. Baughan, T.D., Dickson, A., Osman, E.Y. & Lorson, C.L. Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy. Hum. Mol. Genet. 18, 1600–1611 (2009).

    Article  CAS  Google Scholar 

  13. Cartegni, L. & Krainer, A.R. Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat. Struct. Biol. 10, 120–125 (2003).

    Article  CAS  Google Scholar 

  14. Skordis, L.A., Dunckley, M.G., Yue, B., Eperon, I.C. & Muntoni, F. Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc. Natl. Acad. Sci. USA 100, 4114–4119 (2003).

    Article  CAS  Google Scholar 

  15. Villemaire, J., Dion, I., Elela, S.A. & Chabot, B. Reprogramming alternative pre-messenger RNA splicing through the use of protein-binding antisense oligonucleotides. J. Biol. Chem. 278, 50031–50039 (2003).

    Article  CAS  Google Scholar 

  16. Goraczniak, R., Behlke, M.A. & Gunderson, S.I. Gene silencing by synthetic U1 adaptors. Nat. Biotechnol. 27, 257–263 (2009).

    Article  CAS  Google Scholar 

  17. Bennett, C.F. & Swayze, E.E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010).

    Article  CAS  Google Scholar 

  18. Bauman, J., Jearawiriyapaisarn, N. & Kole, R. Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides 19, 1–13 (2009).

    Article  CAS  Google Scholar 

  19. Bennett, C.F. et al. Antisense oligonucleotide-based therapeutics. in Gene and Cell Therapy: Therapeutic Mechanisms and Strategies (ed. Templeton, N.S.) 497–522 (Taylor & Francis Group, 2009).

  20. Swayze, E.E. & Balkrishen, B. The medicinal chemistry of oligonucleotides. in Antisense Drug Technology: Principles, Strategies and Applications (ed. Crooke, S.T.) 143–182 (Taylor & Francis Group, 2008).

  21. Seth, P.P. et al. Synthesis and biophysical evaluation of 2′,4′-constrained 2′O-methoxyethyl and 2′,4′-constrained 2′O-ethyl nucleic acid analogues. J. Org. Chem. 75, 1569–1581 (2010).

    Article  CAS  Google Scholar 

  22. Levin, A.A., Yu, R.Z. & Geary, R.S. Basic principles of the pharmacokinetics of antisense oligonucleotide drugs. in Antisense Drug Technology: Principles, Strategies and Applications (ed. Crooke, S.T.) 183–215 (Taylor & Francis Group, 2008).

  23. Chen, M. & Manley, J.L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 10, 741–754 (2009).

    Article  CAS  Google Scholar 

  24. Hua, Y., Vickers, T.A., Okunola, H.L., Bennett, C.F. & Krainer, A.R. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82, 834–848 (2008).

    Article  CAS  Google Scholar 

  25. Lorson, C.L., Hahnen, E., Androphy, E.J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 96, 6307–6311 (1999).

    Article  CAS  Google Scholar 

  26. Pandya-Jones, A. & Black, D.L. Co-transcriptional splicing of constitutive and alternative exons. RNA 15, 1896–1908 (2009).

    Article  CAS  Google Scholar 

  27. Noguchi, T., Inoue, H. & Tanaka, T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J. Biol. Chem. 261, 13807–13812 (1986).

    CAS  PubMed  Google Scholar 

  28. Christofk, H.R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  Google Scholar 

  29. Boise, L.H. et al. bcl-x, a bcl-2–related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).

    Article  CAS  Google Scholar 

  30. Goedert, M., Spillantini, M.G., Potier, M.C., Ulrich, J. & Crowther, R.A. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J. 8, 393–399 (1989).

    Article  CAS  Google Scholar 

  31. Rademakers, R., Cruts, M. & van Broeckhoven, C. The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum. Mutat. 24, 277–295 (2004).

    Article  CAS  Google Scholar 

  32. Singh, N.K., Singh, N.N., Androphy, E.J. & Singh, R.N. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol. Cell. Biol. 26, 1333–1346 (2006).

    Article  CAS  Google Scholar 

  33. Guan, D. et al. Nuclear factor 45 (NF45) is a regulatory subunit of complexes with NF90/110 involved in mitotic control. Mol. Cell. Biol. 28, 4629–4641 (2008).

    Article  CAS  Google Scholar 

  34. Liao, H.J., Kobayashi, R. & Mathews, M.B. Activities of adenovirus virus-associated RNAs: purification and characterization of RNA binding proteins. Proc. Natl. Acad. Sci. USA 95, 8514–8519 (1998).

    Article  CAS  Google Scholar 

  35. Kawasaki, A.M. et al. Uniformly modified 2′-deoxy-2′-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J. Med. Chem. 36, 831–841 (1993).

    Article  CAS  Google Scholar 

  36. Teplova, M. et al. Crystal structure and improved antisense properties of 2′-O-(2-methoxyethyl)-RNA. Nat. Struct. Biol. 6, 535–539 (1999).

    Article  CAS  Google Scholar 

  37. Li, F. et al. 2′-Fluoroarabino- and arabinonucleic acid show different conformations, resulting in deviating RNA affinities and processing of their heteroduplexes with RNA by RNase H. Biochemistry 45, 4141–4152 (2006).

    Article  CAS  Google Scholar 

  38. Inoue, H. et al. Synthesis and hybridization studies on two complementary nona(2′-O-methyl)ribonucleotides. Nucleic Acids Res. 15, 6131–6148 (1987).

    Article  CAS  Google Scholar 

  39. Wilds, C.J. & Damha, M.J. 2′-Deoxy-2′-fluoro-β-D-arabinonucleosides and oligonucleotides (2′F-ANA): synthesis and physicochemical studies. Nucleic Acids Res. 28, 3625–3635 (2000).

    Article  CAS  Google Scholar 

  40. Vester, B. & Wengel, J. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43, 13233–13241 (2004).

    Article  CAS  Google Scholar 

  41. Jepsen, J.S., Sorensen, M.D. & Wengel, J. Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. Oligonucleotides 14, 130–146 (2004).

    Article  CAS  Google Scholar 

  42. Liu, J., Hu, J. & Corey, D.R. Expanding the action of duplex RNAs into the nucleus: redirecting alternative splicing. Nucleic Acids Res. 40, 1240–1250 (2011).

    Article  Google Scholar 

  43. Cohen, J.S. Informational drugs: a new concept in pharmacology. Antisense Res. Dev. 1, 191–193 (1991).

    Article  CAS  Google Scholar 

  44. Wang, G.S. & Cooper, T.A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8, 749–761 (2007).

    Article  CAS  Google Scholar 

  45. Barber, G.N. The NFAR's (nuclear factors associated with dsRNA): evolutionarily conserved members of the dsRNA binding protein family. RNA Biol. 6, 35–39 (2009).

    Article  CAS  Google Scholar 

  46. Win, M.N., Liang, J.C. & Smolke, C.D. Frameworks for programming biological function through RNA parts and devices. Chem. Biol. 16, 298–310 (2009).

    Article  CAS  Google Scholar 

  47. Hua, Y. et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 24, 1634–1644 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Berdeja for Tm measurements and E. Swayze, W. Lima and D. Corey for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.R., Y.H., T.P.P., A.R.K. and C.F.B. conceived of and designed the experiments. F.R. and S.J.C. performed the experiments. F.R. and C.F.B. analyzed the data. T.P.P. synthesized the ASOs. F.R. and C.F.B. wrote the paper.

Corresponding author

Correspondence to C Frank Bennett.

Ethics declarations

Competing interests

F.R., S.J.C., T.P.P. and C.F.B. are employees of ISIS Pharmaceuticals. A.R.K. serves on the scientific advisory board of two nonprofit spinal muscular atrophy foundations and is a consultant for ISIS Pharmaceuticals.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigo, F., Hua, Y., Chun, S. et al. Synthetic oligonucleotides recruit ILF2/3 to RNA transcripts to modulate splicing. Nat Chem Biol 8, 555–561 (2012). https://doi.org/10.1038/nchembio.939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing