Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel targets for Huntington's disease in an mTOR-independent autophagy pathway

Abstract

Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases such as Huntington's disease. Autophagy induction with the mTOR inhibitor rapamycin accelerates clearance of these toxic substrates. As rapamycin has nontrivial side effects, we screened FDA-approved drugs to identify new autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the Gi signaling activator clonidine induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, in which cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating G, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced, and we provide proof of principle for therapeutic relevance in Huntington's disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+ (like excitotoxicity) inhibit autophagy, thus retarding clearance of aggregate-prone proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of autophagy-inducing drugs.
Figure 2: I1R agonists act through cAMP on Rap2B and PLC-ε to modulate autophagy.
Figure 3: The effects of L-type Ca2+ channel agonist on autophagy and mutant huntingtin aggregation are abrogated by calpain inhibition.
Figure 4: Calpain inhibition increases aggregate-prone protein clearance.
Figure 5: Calpain inhibition induces autophagy.
Figure 6: Calpain cleaves G, creating a link between the cAMP and Ca2+-calpain pathways.
Figure 7: Regulation of autophagy by calpain is mTOR independent.
Figure 8: L-type Ca2+ channel antagonists, I1R agonists, cAMP antagonists and calpain inhibitors rescue Huntington's disease phenotypes in zebrafish.

Similar content being viewed by others

References

  1. Rubinsztein, D.C., Gestwicki, J.E., Murphy, L.O. & Klionsky, D.J. Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 6, 304–312 (2007).

    Article  CAS  Google Scholar 

  2. Klionsky, D.J. & Emr, S.D. Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721 (2000).

    Article  CAS  Google Scholar 

  3. Rubinsztein, D.C. Lessons from animal models of Huntington's disease. Trends Genet. 18, 202–209 (2002).

    Article  CAS  Google Scholar 

  4. Gafni, J. & Ellerby, L.M. Calpain activation in Huntington's disease. J. Neurosci. 22, 4842–4849 (2002).

    Article  CAS  Google Scholar 

  5. Gafni, J. et al. Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J. Biol. Chem. 279, 20211–20220 (2004).

    Article  CAS  Google Scholar 

  6. Zeron, M.M. et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 33, 849–860 (2002).

    Article  CAS  Google Scholar 

  7. Tang, T.S. et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39, 227–239 (2003).

    Article  CAS  Google Scholar 

  8. Ravikumar, B., Duden, R. & Rubinsztein, D.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002).

    Article  CAS  Google Scholar 

  9. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    Article  CAS  Google Scholar 

  10. Sarkar, S., Davies, J.E., Huang, Z., Tunnacliffe, A. & Rubinsztein, D.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem. 282, 5641–5652 (2007).

    Article  CAS  Google Scholar 

  11. Sarkar, S. et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170, 1101–1111 (2005).

    Article  CAS  Google Scholar 

  12. Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat. Chem. Biol. 3, 331–338 (2007).

    Article  CAS  Google Scholar 

  13. Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006).

    Article  CAS  Google Scholar 

  14. Webb, J.L., Ravikumar, B., Atkins, J., Skepper, J.N. & Rubinsztein, D.C. Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    Article  CAS  Google Scholar 

  15. Berger, Z. et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15, 433–442 (2006).

    Article  CAS  Google Scholar 

  16. Gutierrez, M.G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    Article  CAS  Google Scholar 

  17. Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science 306, 1037–1040 (2004).

    Article  CAS  Google Scholar 

  18. Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    Article  CAS  Google Scholar 

  19. Sarbassov, D.D., Ali, S.M. & Sabatini, D.M. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17, 596–603 (2005).

    Article  CAS  Google Scholar 

  20. Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T. & Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  Google Scholar 

  21. Greenberg, D.A., Cooper, E.C. & Carpenter, C.L. Calcium channel 'agonist' BAY K 8644 inhibits calcium antagonist binding to brain and PC12 cell membranes. Brain Res. 305, 365–368 (1984).

    Article  CAS  Google Scholar 

  22. Hockerman, G.H., Peterson, B.Z., Johnson, B.D. & Catterall, W.A. Molecular determinants of drug binding and action on L-type calcium channels. Annu. Rev. Pharmacol. Toxicol. 37, 361–396 (1997).

    Article  CAS  Google Scholar 

  23. Mizushima, N. Methods for monitoring autophagy. Int. J. Biochem. Cell Biol. 36, 2491–2502 (2004).

    Article  CAS  Google Scholar 

  24. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  25. Osborne, N.N. Inhibition of cAMP production by alpha 2-adrenoceptor stimulation in rabbit retina. Brain Res. 553, 84–88 (1991).

    Article  CAS  Google Scholar 

  26. Felsen, D. et al. Identification, localization and functional analysis of imidazoline and alpha adrenergic receptors in canine prostate. J. Pharmacol. Exp. Ther. 268, 1063–1071 (1994).

    CAS  PubMed  Google Scholar 

  27. Greney, H. et al. Coupling of I(1) imidazoline receptors to the cAMP pathway: studies with a highly selective ligand, benazoline. Mol. Pharmacol. 57, 1142–1151 (2000).

    CAS  PubMed  Google Scholar 

  28. Kopperud, R., Krakstad, C., Selheim, F. & Doskeland, S.O. cAMP effector mechanisms. Novel twists for an 'old' signaling system. FEBS Lett. 546, 121–126 (2003).

    Article  CAS  Google Scholar 

  29. Kelley, G.G., Reks, S.E., Ondrako, J.M. & Smrcka, A.V. Phospholipase C(epsilon): a novel Ras effector. EMBO J. 20, 743–754 (2001).

    Article  CAS  Google Scholar 

  30. Enserink, J.M. et al. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat. Cell Biol. 4, 901–906 (2002).

    Article  CAS  Google Scholar 

  31. Shi, G.X., Rehmann, H. & Andres, D.A. A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation. Mol. Cell. Biol. 26, 9136–9147 (2006).

    Article  CAS  Google Scholar 

  32. Ster, J. et al. Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+-dependent K+ channels in cerebellar neurons. Proc. Natl. Acad. Sci. USA 104, 2519–2524 (2007).

    Article  CAS  Google Scholar 

  33. Qiao, J., Mei, F.C., Popov, V.L., Vergara, L.A. & Cheng, X. Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP. J. Biol. Chem. 277, 26581–26586 (2002).

    Article  CAS  Google Scholar 

  34. vom Dorp, F. et al. Inhibition of phospholipase C-epsilon by Gi-coupled receptors. Cell. Signal. 16, 921–928 (2004).

    Article  CAS  Google Scholar 

  35. Criollo, A. et al. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ. 14, 1029–1039 (2007).

    Article  CAS  Google Scholar 

  36. Schell, M.J., Erneux, C. & Irvine, R.F. Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus. J. Biol. Chem. 276, 37537–37546 (2001).

    Article  CAS  Google Scholar 

  37. Goll, D.E., Thompson, V.F., Li, H., Wei, W. & Cong, J. The calpain system. Physiol. Rev. 83, 731–801 (2003).

    Article  CAS  Google Scholar 

  38. Hayashi, S., Horie, M. & Okada, Y. Ionic mechanism of minoxidil sulfate-induced shortening of action potential durations in guinea pig ventricular myocytes. J. Pharmacol. Exp. Ther. 265, 1527–1533 (1993).

    CAS  PubMed  Google Scholar 

  39. Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23, 33–42 (1998).

    Article  CAS  Google Scholar 

  40. Ravikumar, B. et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 37, 771–776 (2005).

    Article  CAS  Google Scholar 

  41. Gordon, P.B., Holen, I., Fosse, M., Rotnes, J.S. & Seglen, P.O. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J. Biol. Chem. 268, 26107–26112 (1993).

    CAS  PubMed  Google Scholar 

  42. Sato-Kusubata, K., Yajima, Y. & Kawashima, S. Persistent activation of Gsalpha through limited proteolysis by calpain. Biochem. J. 347, 733–740 (2000).

    Article  CAS  Google Scholar 

  43. Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 8, 1124–1132 (2006).

    Article  CAS  Google Scholar 

  44. Jackson, G.R. et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642 (1998).

    Article  CAS  Google Scholar 

  45. Steffan, J.S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743 (2001).

    Article  CAS  Google Scholar 

  46. Butler, R. & Bates, G.P. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat. Rev. Neurosci. 7, 784–796 (2006).

    Article  CAS  Google Scholar 

  47. Hucho, T.B., Dina, O.A. & Levine, J.D. Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J. Neurosci. 25, 6119–6126 (2005).

    Article  CAS  Google Scholar 

  48. Budovskaya, Y.V., Stephan, J.S., Reggiori, F., Klionsky, D.J. & Herman, P.K. The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J. Biol. Chem. 279, 20663–20671 (2004).

    Article  CAS  Google Scholar 

  49. Holen, I., Gordon, P.B., Stromhaug, P.E. & Seglen, P.O. Role of cAMP in the regulation of hepatocytic autophagy. Eur. J. Biochem. 236, 163–170 (1996).

    Article  CAS  Google Scholar 

  50. Orrenius, S., Zhivotovsky, B. & Nicotera, P. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552–565 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Yoshimori (Osaka University) for LC3 antibody, myc-LC3 and EGFP-LC3 constructs, N. Mizushima (Tokyo Medical and Dental University) for wild-type and knockout Atg5 MEFs, wild-type Atg5 and K130R Atg5 constructs, G. Jackson (University of California, Los Angeles) for the gmrQ120 flies, K.L. Guan (University of Michigan, Ann Arbor) for rheb construct, A. Wells (University of Pittsburgh) for constitutive active S50E m-calpain construct, J. Lomasney (Northwestern University, Chicago) for wild-type PLC-ε construct, J. de Gunzburg (Institut Curie, Paris) for dominant-negative Rap2B construct, R.F. Irvine (University of Cambridge) for cytosolic IP3 kinase A construct, M. Mizuguchi (Toyama Medical and Pharmaceutical University) for human LC3B construct, J.P. Luzio (University of Cambridge) for GFP-lgp20 construct, R. Tsien (University of California, San Diego) for mCherry construct, A.M. Tolkovsky (University of Cambridge) for EGFP-LC3 HeLa stable cells, N.P. Dantuma (Karolinska Institute, Stockholm) for UbG76V-GFP HeLa stable cells, M. Mahaut-Smith for use of the spectrophotometer, J.N. Skepper for EM, A. Roach for critical comments and A. Cordenier for technical assistance. We are grateful for the Gates Cambridge Scholarship and Hughes Hall Research Fellowship (S. Sarkar), Medical Research Council Studentships (A.W., E.K.T.), Biotechnology and Biological Sciences Research Council Career Development Award (C.J.O.'K.), Eli Lilly Pergolide Fellowship (S. Saiki), Academy of Medical Sciences–Medical Research Council Clinical Scientist Fellowship (R.A.F.), Wellcome Trust Senior Fellowship in Clinical Science (D.C.R.), Knowledge Transfer Partnership grant (Department of Trade and Industry), an MRC Programme Grant, an MRC Link Grant, European Union Framework VI (EUROSCA) and the National Institute for Health Research Biomedical Research Centre at Addenbrooke's Hospital for funding.

Author information

Authors and Affiliations

Authors

Contributions

A.W., S. Sarkar, P.C., E.K.T., S. Saiki, F.H.S., L.J., D.P. and R.A.F. performed experiments. All authors participated in the design and analysis of various experiments. A.W., S. Sarkar and D.C.R. wrote the paper.

Corresponding author

Correspondence to David C Rubinsztein.

Ethics declarations

Competing interests

D.P. and A.F. are employees of Summit plc and have share options in this company. A.F. and P.G. are shareholders in Summit plc. So.S., A.W., D.C.R., E.K.T., C.J.O'K. and R.A.F. are inventors on patents relating to the use of autophagy activation in various diseases.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Methods and Supplementary Discussion (PDF 1644 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, A., Sarkar, S., Cuddon, P. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol 4, 295–305 (2008). https://doi.org/10.1038/nchembio.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing